

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.: FHWA-GA-18-1626	2. Government Accession No.: 3. Recipient's Catalog		ipient's Catalog No.:	
4. Title and Subtitle: Crash Tests on Guardrail Systems Asphalt Vegetation Barriers in Ad	5. Report Date: October 2018			
GDOT Design Specifications		6. Performing Organization Code:		
7. Author(s): D.W. Scott, L.K. Stewart, D.W.	8. Performing Organ. Report No.: 16-26			
9. Performing Organization Name Georgia Institute of Technolog School of Civil and Environme	10. Work Unit N	10. Work Unit No.:		
790 Atlantic Drive NW Atlanta, GA 30332		11. Contract or (Grant No).:
Georgia Department of Transp	12. Sponsoring Agency Name and Address: Georgia Department of Transportation			Period Covered: agust 2018
Office of Performance-based M Research 15 Kennedy Drive Forest Park, GA 30297-2534	14. Sponsoring Agency Code:			
15. Supplementary Notes: Prepared in cooperation with the	U.S. Department of	Transportation, Fe	deral Hi	ghway Administration.
Prepared in cooperation with the U.S. Department of Transportation, Federal Highway Administra 16. Abstract: The Georgia Department of Transportation authorized a series of tests to be performed on guardra installed in accordance with GDOT Standard Detail S-4-2002, which was used in Georgia prior to and includes an asphalt mow strip with nearby curb. The University of Nebraska's Midwest Roads Safety Facility (MwRSF) was selected to perform the tests in accordance with AASHTO's <i>Manua</i> <i>Assessing Safety Hardware</i> (MASH 2016). A single crash test was performed using Test Vehicle 1100C, a small passenger car. The crash test results exceeded multiple MASH safety evaluation cr including occupant compartment deformation, windshield crushing, and maximum allowable Occ Ridedown Acceleration (ORA). Thus, the Midwest Guardrail System (MGS) installed in an aspha mow strip with a curb placed behind the barrier was deemed to be unacceptable according to the T safety performance criteria for test designation no. 3-10 provided in MASH 2016.				
17. Key Words: Guardrails, mow strip, MASH tes	sting,	18. Distribution Statement:		nt:
report): page)	ecurity Class (this): nclassified	21. Number of P 183	ages:	22. Price:

GDOT Research Project No. 16-26

Final Report

CRASH TESTS ON GUARDRAIL SYSTEMS EMBEDDED IN ASPHALT VEGETATION BARRIERS IN ACCORDANCE WITH GDOT DESIGN SPECIFICATIONS

By

David Scott, Associate Professor

Lauren Stewart, Assistant Professor

Donald White, Professor

Georgia Tech Research Corporation Atlanta, Georgia

Contract with

Georgia Department of Transportation

In cooperation with

U.S. Department of Transportation Federal Highway Administration

January 4, 2019

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Georgia Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

TABLE OF CONTENTS

LIST OF TABL	ES	iii
LIST OF FIGU	RES	iv
EXECUTIVE S	UMMARY	v
ACKNOWLED	GEMENTS	vii
CHAPTER 1.	INTRODUCTION AND BACKGROUND	1
1.1	Problem Statement	1
1.2	Project Objectives	2
1.3	Background	3
1.4	Report Organization	7
CHAPTER 2.	MASH TEST SCOPE AND TEST SETUP	8
2.1	Selection of MASH Test Location and Scope of Testing	8
2.2	Test Site Design and Construction	9
2.3	Test Conditions and Evaluation Criteria	13
2.4	Test Vehicle / Simulated Occupant / Instrumentation	14
CHAPTER 3.	FULL-SCALE CRASH TEST GAA-1 UNDER TEST CONDITION TL 3-10	17
3.1	Test Description and Results	17
3.2	Posttest Analysis of Asphalt Layer Characteristics	21
CHAPTER 4.	CONCLUSIONS	25
CHAPTER 5.	REFERENCES	27
APPENDIX	RESEARCH REPORT TRP-03-377-17 FROM THE MIDWEST ROADSIDE SAFETY FACILITY	31

LIST OF TABLES

Tab	ble	Page
1.	MASH Test Level 3 Crash Test Conditions	13
2.	MASH Evaluation Criteria for Longitudinal Barrier	14
3.	Weather Conditions for Test GAA-1 on 02/14/2017	17
4.	Sequential Description of Impact Events for Test GAA-1	20
5.	Summary of Safety Performance Evaluation Results for Test GAA-1	21

LIST OF FIGURES

Figu	Page
1.	Guardrail Installations: (a) Typical Installation in Georgia; (b) Installation Incorporating Grout Leave-outs as Recommended in the <i>Roadside Design</i> <i>Guide</i>
2.	Test Installation Layout for MASH Test 3-109
3.	GDOT Drawing Detail S-4-2002 10
4.	Test Bed Site – View Showing Area Directly Behind the Post 11
5.	Typical Post Installation Procedure in Georgia 12
6.	Typical Post Installation at MwRSF Test Site 12
7.	2011 Kia Rio Used as Test Vehicle for GAA-1, TL 3-10 15
8.	Simulated Occupant in Test Vehicle for GAA-1, TL 3-10 16
9.	Sequential Photographs for Test GAA-1, TL 3-10 on 2/14/17 19
10.	Buckled Post from Test GAA-1
11.	Test Results from Asphalt Cores Taken from MwRSF Site After Test GAA-1 24

EXECUTIVE SUMMARY

Steel guardrail is the most common roadside barrier installed along Georgia's 20,000 miles of interstates and state routes. The objective of this multiphase research program is to evaluate the structural behavior of guardrail posts embedded through asphalt layers. Phase I of this research focused on static evaluation and numerical simulation of the structural performance of guardrail posts installed in accordance with current Georgia Department of Transportation (GDOT) procedures to include a mow strip as well as alternative installation options developed in consultation with GDOT. A subset of the most promising alternative installation methods was selected for further evaluation under subcomponent dynamic loading in the Phase II effort. The results from the dynamic tests were used to refine and expand the results of finite element analysis (FEA) of both the subcomponent tests as well as full-scale crash test simulations. Phase III of the research program presents the results of a *Manual for Assessing Safety Hardware* (MASH 2016) full-scale crash test performed on a standard guardrail system installed with an asphalt mow strip; the results of this test are the subject of the present report.

The Georgia Department of Transportation authorized a series of tests to be performed on guardrails installed in accordance with GDOT Standard Detail S-4-2002. The University of Nebraska's Midwest Roadside Safety Facility (MwRSF), located in Lincoln, Nebraska, was selected to perform the tests in accordance with AASHTO's MASH 2016. A single crash test was performed using Test Vehicle 1100C, a small passenger car, on February 14, 2017.

The crash test results exceeded multiple MASH safety evaluation criteria, including occupant compartment deformation, windshield crushing, and maximum allowable

Occupant Ridedown Acceleration (ORA). Thus, the barrier installation in test GAA-1 exhibited unacceptable safety performance. There were some minor discrepancies between the test site and the GDOT S-4-2002 drawing detail. However, the failure of test GAA-1 to satisfy MASH criteria cannot be attributed to those discrepancies.

The GDOT S-4-2002 mow strip configuration is no longer in use by GDOT. Beginning March 15, 2017, GDOT directed that all new guardrail construction projects on Georgia roadways use asphalt layers that are paved up to the face of the post, leaving the post itself and the area behind unrestrained.

ACKNOWLEDGEMENTS

The following individuals at GDOT provided many valuable suggestions throughout this study: Mr. Brent Story, State Design Policy Engineer; Mr. Daniel Pass, Assistant State Design Policy Engineer; Mr. Beau Quarles, Assistant Construction Engineer; and Mr. David Jared, Assistant Office Head (Research), Office of Performancebased Management and Research.

The opinions and conclusions expressed herein are those of the authors and do not represent the opinions, conclusions, policies, standards, or specifications of GDOT or of other cooperating organizations.

The MASH testing described herein was performed at the University of Nebraska's Midwest Roadside Safety Facility in Lincoln, Nebraska. Ron Faller, John Reid, Karla Lechtenberg, Michael Sweigard, and Erin Urbank facilitated the setup and completion of the testing, and submitted the final report detailing the crash test results.

The authors express their profound gratitude to all of these individuals for their assistance and support during the completion of this research project.

CHAPTER 1. INTRODUCTION AND BACKGROUND

1.1 Problem Statement

Prior to March 2017, the preferred procedure for steel guardrail installation in the state of Georgia [1,2] employed a post-installation machine, which is typically hydraulic, to drive the posts through a layer of asphalt (i.e., a "mow strip") placed to retard vegetation growth around the system (Figure 1a). This procedure was outlined in Georgia Department of Transportation (GDOT) Standard Detail S-4-2002 (referred to hereafter as GDOT S-4-2002). However, to avoid undesirable restraint at the ground line, the Fourth Edition of the AASHTO *Roadside Design Guide* [3] recommends a post installed incorporating grout leave-outs (LOs) (Figure 1b). This recommendation is based on research performed by the Texas Transportation Institute (TTI) [4,5].

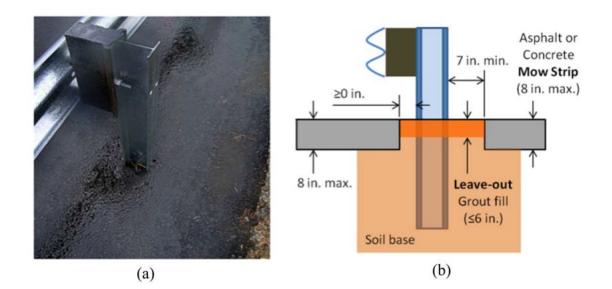


FIGURE 1 Guardrail Installations: (a) Typical Installation in Georgia; (b) Installation Incorporating Grout Leave-outs as Recommended in the *Roadside Design Guide* [3]

1.2 Project Objectives

The objective of this research program was to evaluate the structural behavior of guardrail posts embedded through asphalt layers. Phase I of this research focused on static evaluation and numerical simulation of the structural performance of guardrail posts installed in accordance with current GDOT procedures that include a mow strip [6], as well as alternative installation options developed in consultation with GDOT. A subset of the most promising alternative installation methods was selected for further evaluation under subcomponent dynamic loading in the Phase II effort [7]. The dynamic tests' results were used to refine and expand the results of finite element analyses (FEAs) of both the subcomponent tests as well as full-scale crash test simulations. Phase III of the research program entailed a *Manual for Assessing Safety Hardware* (MASH) [8] full-scale crash test performed on a standard guardrail system installed in accordance with GDOT S-4-2002; the results of this test are the subject of the present report.

Steel guardrail is the most common roadside barrier installed along Georgia's 20,000 miles of interstates and state routes [9]. This multiphase research program addresses a specific concern raised by GDOT personnel relating to the safety and efficacy of current state guardrail installation procedures in comparison to guidelines found in the *Roadside Design Guide*. The safety and effectiveness of the guardrail systems installed using these procedures must be rigorously evaluated to ensure compliance with Federal Highway Administration (FHWA) guidelines.

1.3 Background

A large volume of work exists in the literature regarding the testing and evaluation of guardrail posts and systems. Summaries of representative work specifically related to crash testing on longitudinal barriers are presented below.

1.3.1 Full-scale Crash Testing Using NCHRP 350 Guidelines

Mak et al. [10] classified the most frequently used guardrail systems into six categories (i.e., Cable, W-beam weak post, W-beam strong post, Box-beam, Thrie-beam, and Modified Thrie-beam) and performed eight full-scale crash tests in accordance with National Cooperative Highway Research Program (NCHRP) Report 350 [11] guidelines. The purpose of their experimental study was to evaluate the crash performance of all existing guardrail systems and to inform if the devices in the systems need to be redesigned to improve their crash performance. Bullard et al. [12] tested a modified W-beam guardrail system replacing W6×9 (W150×13.5) steel flange blockouts (also known as "rail spacer" or "offset block") with nominal 6-in.×8-in. (152 mm × 203 mm) timber blockouts. The guardrail system showed a satisfactory crash performance under the same test conditions as the previous study. Bligh et al. [13] tested a combination of shorter (5 ft 6 in.) steel posts with less embedment depth (38 in. [965 mm]) and reduced-size (6-in.×6-in.) timber blockouts compared to those same parameters (6 ft 0 in., 44 in. [1118 mm], and 6-in.×8-in., respectively) of the previous study by Bullard et al. [12].

Researchers have performed multiple experimental studies evaluating specific design modifications that incorporate alternative components of the guardrail system. Bligh and Menges [14] tested guardrail systems with standard steel posts and recycled

polyethylene blockouts. Buth et al. [15] tested a modified guide rail in conjunction with the current W-beam guardrail system.

W-beam guardrail systems under specific roadside conditions were also investigated. Bullard and Menges [16] tested a guardrail system consisting of wood posts installed with 4-inch-high asphaltic curb under the rail. Rohde and Herr [17] investigated the performance of guardrail systems when steel posts were installed in rock foundation.

The Midwest Guardrail System (MGS) [18], tested and evaluated under NCHRP 350, is a non-proprietary guardrail system developed by the Midwest Roadside Safety Facility (MwRSF). Several full-scale crash tests [19–21] demonstrated that design modifications improved the crash performance of the system, compared to the performance and failure modes observed in previous crash test results performed by TTI [10,15]. Polivka et al. [22] performed a total of six full-scale crash tests to investigate the alternative design of the guardrail system with reduced post spacing (half and quarter) and a design configured with 6-inch-tall concrete curbs under the rail. Bielenberg et al. [23] performed two full-scale crash tests to investigate the application of the MGS with long-span culverts.

1.3.2 Full-scale Crash Testing Using MASH Guidelines

Wiebelhaus et al. [24] tested the performance of the MGS (Midwest Guardrail System) placed adjacent to steep roadside slopes in accordance with the MASH guidelines. The system, incorporating 9-ft-long steel posts with a standard post spacing of 75 in., showed satisfactory performance under the MASH full-scale crash test criteria as well as under NCHRP 350 criteria.

Bligh et al. [25] reviewed the W-beam guardrail standards and installation methods of the Texas Department of Transportation (TxDOT) using MASH. This research group evaluated a 31-in.-tall W-beam guardrail system incorporating conventional 8-in.-deep offset blocks, and the system met all required MASH performance criteria.

Williams and Menges [26] performed a research study testing the W-beam guardrail on a low-fill box culvert in accordance with MASH. This study incorporated the use of standard W6×9 steel posts with welded base plate details and an epoxy anchoring system for a simplified installation. The guardrail system was tested under the MASH Test 3-11 conditions and performed acceptably.

Stolle et al. [27] evaluated the MGS with two different mounting-height and embedment-depth combinations and then established the maximum mounting height of the system under MASH. While there had been a recommended minimum top rail mounting height of 27³/₄ in. according to the full-scale tests in compliance with NCHRP 350, no maximum height recommendation existed. This research group performed two full-scale crash tests on the different MGS setups: (1) 34-in. height and 37-in. depth and (2) 36-in. height and 35-in. depth. Both system heights/depths were found to meet the MASH evaluation criteria.

Schrum et al. [28] evaluated the MGS without offset blocks. Since a narrow roadside condition hinders the use of standard 12-in. offset blocks in the W-beam guardrail system, several state departments of transportation requested the development of a non-proprietary, non-blocked MGS, which can be a comparable option to the proprietary guardrail systems with higher costs. Accordingly, the non-blocked MGS was modified to have additional rail components, and the modified MGS was successfully tested using a small passenger car (MASH Test 3-10) and a pickup truck (MASH Test 3-11). The research

showed an alternative for W-beam guardrail installation when the roadside width is restricted.

Weiland et al. [29] investigated the minimum effective guardrail length for the MGS. Compared to the recommended standard minimum length of 175 ft based on crash testing in accordance with NCHRP 350 and MASH, the research group showed a reduced 75-ft-long MGS performing satisfactorily under the MASH 3-11 full-scale test condition. The researchers also suggested by computer simulation results the possible use of the shorter length of 50-ft and 62-ft 6-in. MGS configurations, but no crash tests were performed on those configurations.

Rosenbaugh et al. [30] performed a series of dynamic impact tests on weak steel posts (S3×5.7) embedded in different ground restraint conditions including concrete mow strips, asphalt mow strips, and steel sockets with shear plates. A total of 11 bogie vehicle tests were run and one test configuration with 6-in.-thick asphalt mow strip and 30-in. embedment depth of the socket was successfully tested under MASH Test 3-11. The research team showed a weak-post, W-beam guardrail system with mow strip is crashworthy when properly designed and installed.

Jowza et al. [31] investigated the performance of wood guardrail posts encased in asphalt mow strips and placed on slopes. Dynamic bogie vehicle tests were performed on wood posts encased in 2-in. asphalt mow strip. In the majority of the tests, wood posts could rotate backward and break the asphalt layer but with an increase in post-soil resistance as compared to tests conducted without the asphalt mow strip.

1.4 Report Organization

Chapter 2 of this report summarizes the planning and setup of the MASH test program used to evaluate the performance of a standard guardrail system installed in accordance with GDOT S-4-2002.

Chapter 3 summarizes the results from this test program carried out in February 2017. Key findings from the tests are presented.

Chapter 4 contains the conclusions for Phase III of this research program.

Chapter 5 contains the references cited in this report.

The Appendix contains the full report submitted by the University of Nebraska Midwest Roadside Safety Facility (MwRSF) for the MASH crash test performed at their facility.

CHAPTER 2. MASH TEST SCOPE AND TEST SETUP

2.1 Selection of MASH Test Location and Scope of Testing

To provide a more definitive assessment of the dynamic performance of steel guardrails installed in asphalt layers without leaveouts, the Georgia Department of Transportation authorized a series of tests to be performed on guardrails installed in accordance with GDOT S-4-2002. After a thorough background investigation by the research team, the University of Nebraska's Midwest Roadside Safety Facility, located in Lincoln, Nebraska, was selected to perform the tests. This organization was selected based on its extensive experience with both NCHRP 350 and MASH testing on a broad range of roadside safety hardware.

In consultation with GDOT personnel in the Office of Design Policy and Support along with MwRSF technical experts, the following initial scope of work was agreed upon:

- Development of 3-D CAD details and 2-D plans for the 175-ft-long MGS barrier installation with asphalt mow strip and curb
- 2. Acquisition of construction materials, mill certifications, material specifications, and Certificates of Conformity
- 3. Construction of test article at MwRSF's outdoor proving grounds
- Execution of one test level 3 (TL-3) full-scale vehicle crash test with an 1100C small passenger car at 62 mph and 25 degrees into the barrier system according to MASH Test 3-10
- 5. Execution of one TL-3 full-scale vehicle crash test with a 2270P pickup truck at 62 mph and 25 degrees into the barrier system according to MASH Test 3-11
- 6. Analysis and evaluation of crash test results

- Removal of damaged hardware from barrier and asphalt systems, as well as disposal of debris and site restoration
- 8. Documentation and preparation of summary research report

2.2 Test Site Design and Construction

A test installation site approximately 182 ft in length was constructed at the MwRSF proving grounds beginning in December 2016, with completion in February 2017. The general layout for the test installation is shown in Figure 2.

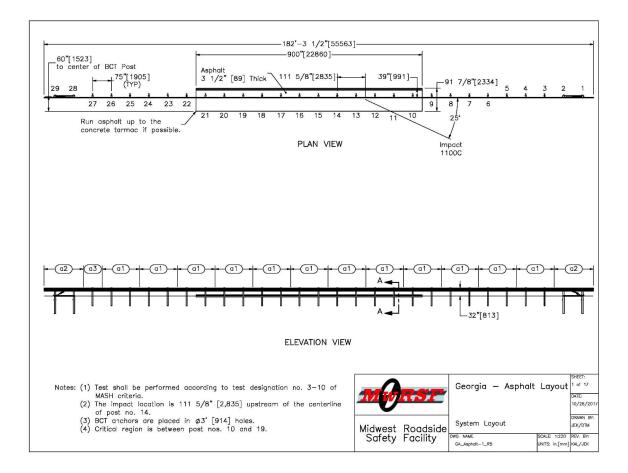


FIGURE 2 Test Installation Layout for MASH Test 3-10

A detailed description of the test bed construction is given in Chapter 3 of the MwRSF report found in the Appendix. In general, the installation of the test site appeared to adhere to the material specifications and dimensions found in GDOT S-4-2002. One variation was noted in that the GDOT detail indicates a graded slope located approximately 42 in. behind the face of the guardrail, as shown in Figure 3. As can be seen in Figure 4, the area behind the post in the test installation was graded horizontal, with an additional pad/test bed located behind the test bed.

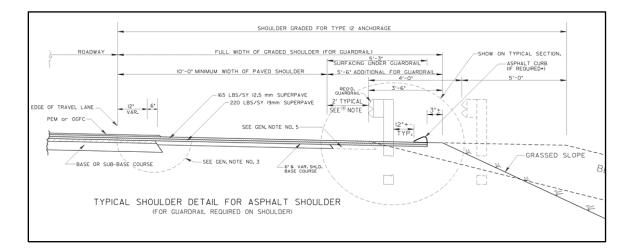


FIGURE 3 GDOT Drawing Detail S-4-2002 [2]

FIGURE 4 Test Bed Site - View Showing Area Directly Behind the Post

One other variation was noted in the test bed compared to a standard installation on Georgia roadways. As shown in Figure 5, in Georgia, posts are installed by driving them through the asphalt using a hydraulic post driver. However, for the test bed installation at the MwRSF proving grounds, the ends of each post were first heated using a torch to a high temperature. The heated posts were then driven through the asphalt layer, effectively melting the asphalt around the installation location. As such, there was no fracturing in the asphalt layer around the post, as is commonly seen in installations in Georgia. A typical installed post on the test bed site is shown in Figure 6.

FIGURE 5 Typical Post Installation Procedure in Georgia

FIGURE 6 Typical Post Installation at MwRSF Test Site

2.3 Test Conditions and Evaluation Criteria

Detailed information on the test conditions and evaluation criteria can be found in Chapter 2 of the MwRSF report located in the Appendix. A summary of pertinent details is presented in this section. Longitudinal barriers such as W-beam guardrails must satisfy impact safety standards set forth in the guidelines and procedures found in the MASH criteria. To satisfy test level 3 of MASH, the barriers must be subjected to two full-scale vehicle crash tests, as summarized in Table 1.

	Test	Test	Vehicle	Impact C		
Test Article	Designation No.	Test Vehicle	Weight (lb)	Speed (mph)	Angle (deg)	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2425	62.0	25	A,D,F,H,I
Barrier	3-11	2270P	5000	62.0	25	A,D,F,H,I

TABLE 1 MASH Test Level 3 Crash Test Conditions

¹ Evaluation criteria explained in Table 2.

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the barrier (i.e., W-beam guardrail system installed in an asphalt mow strip with a curb placed behind the barrier) to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria used for the test at MwRSF are summarized

in Table 2.

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				
	om the test article rating the occupant r traffic, nations of, or d not exceed of MASH 2016.					
	F.	The vehicle should remain u maximum roll and pitch ang				
	H.	 Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits: Occupant Impact Velocity Limits 				
Occupant Risk						
		Component Preferred Maximu				
		-	110101104	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I.		30 ft/s (9.1 m/s) celeration (ORA) (s	40 ft/s (12.2 m/s) ee Appendix A,		
	I.	Longitudinal and Lateral The Occupant Ridedown Ac Section A5.2.2 of MASH 20 satisfy the following limits:	30 ft/s (9.1 m/s) celeration (ORA) (s	40 ft/s (12.2 m/s) ee Appendix A, rocedure) should		
	I.	Longitudinal and Lateral The Occupant Ridedown Ac Section A5.2.2 of MASH 20 satisfy the following limits:	30 ft/s (9.1 m/s) celeration (ORA) (s 16 for calculation p	40 ft/s (12.2 m/s) ee Appendix A, rocedure) should		

TABLE 2 MASH Evaluation Criteria for Longitudinal Barrier

2.4 Test Vehicle / Simulated Occupant / Instrumentation

Detailed information on the test vehicle setup and instrumentation can be found in Chapter 4 of the MwRSF report located in the Appendix. A summary of pertinent details is presented in this section. The first test to be performed was labeled by MwRSF as GAA-1. The vehicle used in this test was a 2011 Kia Rio as shown in Figure 7. A Hybrid II 50th-Percentile Adult Male Dummy, equipped with clothing and footware, was placed in the right-front of the test vehicle as shown in Figure 8.

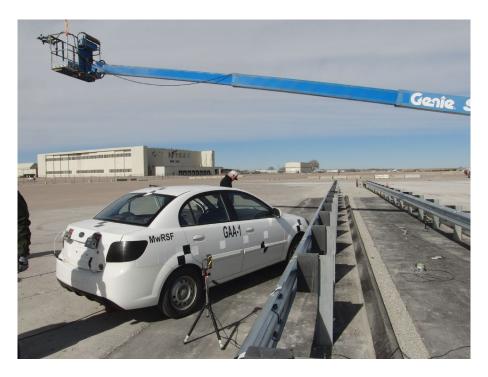


FIGURE 7 2011 Kia Rio Used as Test Vehicle for GAA-1, TL 3-10

FIGURE 8 Simulated Occupant in Test Vehicle for GAA-1, TL 3-10

A wide range of sensors and instrumentation was used in the test, including accelerometers, rate transducers, retroflective optics, load cells, and high-speed digital photography and video. Detailed descriptions of sensor types, locations, and data acquisition procedures may be found in Section 4.5 of the MwRSF report located in the Appendix.

A reverse-cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed. A vehicle guidance system was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system.

CHAPTER 3. FULL-SCALE CRASH TEST GAA-1 UNDER TEST CONDITION TL 3-10

Detailed information on the crash test and the resulting evaluation of results may be found in Chapter 5 of the MwRSF report located in the Appendix. Pertinent results from this test are presented in this chapter. Test GAA-1 was conducted on February 14, 2017, at approximately 2:15 p.m. The weather conditions at the time of the test are shown in Table 3.

Temperature	53°F
Humidity	32%
Wind Speed	17 mph
Wind Direction	320° from True North
Sky Conditions	Overcast
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0 in.
Previous 7-Day Precipitation	0.01 in.

 TABLE 3 Weather Conditions for Test GAA-1 on 02/14/2017

3.1 Test Description and Results

The small car, with a test inertial weight of 2,392 lb, impacted the strong-post, W-beam guardrail system installed with posts driven into an asphalt mow strip with a curb placed behind the barrier at a speed of 62.8 mph and at an angle of 25.1 degrees. Damage to the barrier was extensive, and consisted of rail deformation, contact marks on the front face of the guardrail, guardrail disengagement from posts, deformed steel posts, buckling of numerous posts at the groundline, and asphalt gouging. Damage to the vehicle was also extensive, with the majority concentrated on the right-front corner and the front side of the vehicle. A series of sequential photographs is shown in Figure 9. A sequential description of impact events is given in Table 4. A summary of the safety performance evaluation for the test is given in Table 5. The occupant compartment deformation for the roof was 5.125 in., which exceeded the MASH limit of 4 in. The windshield was crushed inward 7.125 in., which exceeded the MASH limit of 3 in. The maximum longitudinal ORA value of -21.80 g's exceeded the MASH limit of 20.49 g's. Thus, the barrier installation in test GAA-1 exhibited unacceptable safety performance. Based on this test result, the second planned test using test vehicle 2270P (pickup truck) was cancelled.

FIGURE 9 Sequential Photographs for Test GAA-1, TL 3-10 on 2/14/17

Time (s)	Event	
0.000	Vehicle's right front bumper contacted rail between posts 12 and 13.	
0.005	Post no. 13 deflected backward.	
0.010	Post no. 11 twisted clockwise. Vehicle's right headlight shattered.	
0.024	Vehicle's right front door contacted rail and deformed.	
0.028	Vehicle's right A-pillar deformed.	
0.038	Vehicle's right front tire contacted post no. 13.	
0.041	Vehicle underrode rail.	
0.052	Rail disengaged from bolt at post no. 13.	
0.062	Vehicle's right-side airbag deployed.	
0.064	Vehicle pitched downward and left-side airbag deployed.	
0.068	Vehicle's windshield shattered from right-side airbag deployment.	
0.074	Post no. 14 deflected downstream.	
0.082	Vehicle's front bumper contacted post no. 14.	
0.092	Rail disengaged from bolt at post no. 10.	
0.098	Vehicle's right mirror contacted rail and deformed.	
0.104	Rail disengaged from bolt at post no. 14, along with vehicle's bumper.	
0.120	Rail disengaged from bolt at post no. 6.	
0.136	Rail disengaged from bolt at post no. 8.	
0.138	Rail disengaged from bolt at post nos. 4 and 7.	
0.182	Vehicle's left front tire became airborne.	
0.186	Rail disengaged from bolt at post no. 12. Vehicle's left-front bumper disengaged. Vehicle's front bumper contacted post no. 15.	
0.202	Blockout no. 15 disengaged from rail at post no. 15.	
0.207	Vehicle's left-front headlight disengaged and blockout no. 15 disengaged from post no. 15.	
0.220	Vehicle's right A-pillar contacted rail.	
0.285	Vehicle underrode rail and rail disengaged from bolt at post no. 16.	
0.348	Vehicle contacted post no. 16.	
0.360	Vehicle's roof underrode rail.	
0.526	Vehicle contacted post no. 17.	
0.648	Rail disengaged from bolt at post no. 17.	
1.217	Vehicle came to rest.	

TABLE 4 Sequential Description of Impact Events for Test GAA-1

Evaluation Factors		Evaluation	Test No. GAA-1 ¹		
Structural Adequacy	А.	Test article should contain an the vehicle to a controlled sto penetrate, underride, or overr controlled lateral deflection o	S		
	D.	Detached elements, fragment article should not penetrate on the occupant compartment or other traffic, pedestrians, or p Deformations of, or intrusion compartment should not exce Section 5.2.2 and Appendix F	U		
	F.	F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			S
Occupant	H.	Occupant Impact Velocity (O Section A5.2.2 of MASH 201 should satisfy the following 1			
Risk		Occupant Impa	S		
		Component	Preferred	Maximum	
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)	
	I.	The Occupant Ridedown Acc Appendix A, Section A5.2.2 procedure) should satisfy the			
		Occupant Ridedow	n Acceleration]	Limits	U
		Component	Preferred	Maximum	
		Longitudinal and Lateral	15.0 g's	20.49 g's	
		MASH 2016 Test Designa	tion No.		3-10
Final Evaluation (Pass or Fail)				Fail	
¹ S – Satisfact	ory	U – Unsatisfactory NA	A – Not Applicab	e	

TABLE 5 Summary of Safety Performance Evaluation Results for Test GAA-1

3.2 Posttest Analysis of Asphalt Layer Characteristics

It was noted that many of the posts impacted during test GAA-1 did not translate at all in the asphalt layer, with a hinge forming right at the groundline and the post buckling as shown in Figure 10. This behavior differed significantly compared to static and dynamic subcomponent testing done at Georgia Tech during Phases 1 and 2 of this research program, where significant post translation at the groundline was typically observed.

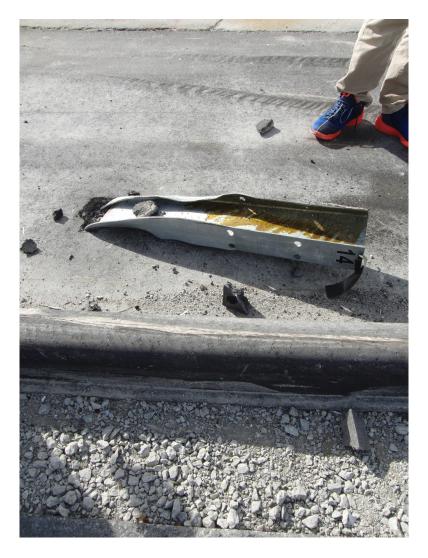


FIGURE 10 Buckled Post from Test GAA-1

At the request of the Georgia Tech research team, a number of these posts were excavated and the resulting holes examined. Rough estimates using hand rulers indicated that the asphalt layer may have been slightly thicker than the 3.5 inches specified in GDOT S-4-2002. As such, three cores were recovered from the test site asphalt layer for

analysis and testing. To determine a representative strength, each specimen was taken from a different location: (1) near the impact point of the crash vehicle, (2) the upstream section, and (3) the downstream section. Based on the heights of the cores taken from the test site, the asphalt strip at the site ranged from 3.75 to at least 4.25 inches in thickness. Though this was higher than the value specified in the GDOT detail, asphalt mow strips of this thickness and more are routinely encountered in Georgia. Compression tests on the cores were performed at the Structural Engineering Mechanics and Materials (SEMM) Laboratory on the Georgia Tech campus. All test protocols were based on ASTM D1074-09: "Standard Test Method for Compressive Strength of Bituminous Mixtures" [32]. Figure 11 includes compression test results and other test information including specimen dimension, test condition, and photographs taken during the test. All specimens showed a similar failure mode represented by lateral expansion and vertical cracks. The average compressive strength from the 3 cores was approximately 400 psi. This value was higher than the average value of approximately 250 psi found for the asphalt used in the laboratory testing, but asphalt strengths in Georgia could reasonably be expected to approach this value in cold weather months. In addition, the cylinders from the MwRSF test site did fail in a manner similar to that seen in cores from asphalt used in Phases 1 and 2 of the research program. As such, the asphalt layer was not considered to be significantly unrepresentative of mow strips found on Georgia roadways.

Specimen	N-01	N-02	N-03		
Core location	Near the impact point	Upstream section	Downstream section		
Test picture (setup)	NI Impert	N2 Upsrewn	N DRUJISHTERY		
Test picture (failure)	NI Impet	N2 Upstreem	NB DRUNSEREEN		
Actual diameter	3.70 in.	3.70 in.	3.70 in.		
Thickness (height)	4.25 in.	3.75 in.	3.80 in.		
Test temperature	70°F	71°F	67°F		
Age of specimen	76 days (curing time from asphalt placement)				
Compressive	371.0 psi	396.5 psi	430.6 psi		
strength	Average compressive strength = 399.4 psi				

FIGURE 11 Test Results from Asphalt Cores Taken from MwRSF Site After Test GAA-1

CHAPTER 4. CONCLUSIONS

The following conclusions can be drawn from the Phase 3 research project:

- The guardrail installation including an asphalt layer used in Test GAA-1 at the Midwest Roadside Safety Facility in Lincoln, Nebraska, on 02/14/17 failed to satisfy safety performance criteria as designated in the AASHTO *Manual for Assessing Safety Hardware* 2016 edition.
- 2. There were some discrepancies between the test site and the GDOT S-4-2002 drawing detail. These discrepancies included a lack of a sloped region behind the layer installation, and a slightly thicker asphalt layer than that specified. In addition, the posts were installed by melting through the asphalt layer instead of being driven through as they are in Georgia. The asphalt used on the test site also had a higher compressive strength than that used in laboratory testing during this research program, but the average compressive strength determined from test site cores would not be considered unusual compared to asphalt used on Georgia roadways. As such, the failure of test GAA-1 to satisfy MASH criteria cannot be attributed to these discrepancies.
- 3. The GDOT S-4-2002 mow strip configuration is no longer in use by GDOT. Beginning March 15, 2017, all new GDOT guardrail construction projects on Georgia roadways were directed to use asphalt layers that were paved up to the face of the post, leaving the post itself and the area behind unrestrained. As such, new guardrail post installations will not be subject to additional restraint by asphalt layers.

CHAPTER 5. REFERENCES

- Georgia Department of Transportation. Standard Specifications: Section 641 Guardrail. http://www.dot.ga.gov/PartnerSmart/Business/Documents/GDOT_SpecBook_2013. pdf. (Accessed Aug. 25, 2015)
- Georgia Department of Transportation. *Construction Standards and Details: No. 4381 and S-4*, 2002. http://mydocs.dot.ga.gov/info/gdotpubs/ConstructionStandardsAndDetails/Forms/A llItems.aspx. (Accessed Aug. 25, 2015)
- American Association of State Highway and Transportation Officials (AASHTO). *Roadside Design Guide, 4th Edition.* Washington, D.C., 2011.
- Bligh, R.P., N.R. Seckinger, A.Y. Abu-Odeh, et al. *Dynamic Response of Guardrail* Systems Encased in Pavement Mow Strips. Research Report FHWA/TX-04/0-4162-2, Texas Transportation Institute, College Station, Texas, 2004.
- Arrington, D.R., R.P. Bligh, and W.L. Menges. *Alternative Design of Guardrail Posts in Asphalt or Concrete Mowing Pads*. Research Report 405160-14-1, Texas Transportation Institute, College Station, Texas, 2009.
- Scott, D., D. White, L. Stewart, et al. Evaluating the Performance of Guardrail Systems for Installation in Georgia by Driving Through Asphalt Layers. Research Report FHWA-GA-15-1321, Georgia Department of Transportation, Atlanta, Georgia, 2015.
- Scott, D., L. Stewart, D. White, et al. Dynamic Subcomponent Testing and Finite Element Simulation of Guardrail Systems with Alternative Post Installation Methodologies. Research Report FHWA-GA-18-1508, Georgia Department of Transportation, Atlanta, Georgia, 2018.
- American Association of State Highway and Transportation Officials (AASHTO). *Manual for Assessing Safety Hardware (MASH), Second Edition*. AASHTO, Washington, D.C., 2016.

- Pass, D. Office of Design Policy and Support, Georgia Department of Transportation, 2013 (personal communication).
- Mak, K., R. Bligh, and W. Menges. Testing of State Roadside Safety Systems— Volume XI: Appendix J—Crash Testing and Evaluation of Existing Guardrail Systems. Research Report FHWA-RD-98-046, Texas Transportation Institute, College Station, Texas, 1998.
- Ross, Jr., H., D. Sicking, and R. Zimmer. *Recommended Procedures for the Safety Performance Evaluation of Highway Features*. NCHRP Report 350, National Cooperative Highway Research Program, 1993.
- Bullard, D., W. Menges, and D. Alberson. NCHRP Report 350 Compliance Test 3-11 of the Modified G4(1S) Guardrail with Timber Blockouts. Research Report FHWA-RD-96-175, Texas Transportation Institute, College Station, Texas, 1996.
- Bligh, R., W. Menges, and B. Butler. *Evaluation of a Modified Steel Post W-Beam Guardrail System*. Research Report 439637-1, Texas Transportation Institute, College Station, Texas, 1997.
- Bligh, R., and W. Menges. *Testing and Evaluation of Modified Steel Post W-Beam Guardrail with Recycled Polyethylene Blockouts*. Research Report 400001-MPT, Texas Transportation Institute, College Station, Texas, 1997.
- Buth, C., W. Menges, W. Williams, et al. NCHRP Report 350 Test 3-11 on the Modified PennDOT Type 2 Guide Rail – Test 3. Research Report RF473750-3, Texas Transportation Institute, College Station, Texas, 2000.
- Bullard, D., and W. Menges. NCHRP Report 350 Test 3-11 on the G4(2W) Strong Post W-beam Guardrail with 100 mm High Asphaltic Curb. Research Report 404201-1, Texas Transportation Institute, College Station, Texas, 2000.
- Rohde, J., and J. Herr. "Development of Guidelines for Placement of Guardrail Posts in Rock." *Transportation Research Record*, No. 1890, 2004, pp. 42–48.
- Sicking, D., J. Reid, and J. Rohde. "Development of the Midwest Guardrail System." *Transportation Research Record*, No. 1797, 2002, pp. 44–52.

- Polivka, K., R. Faller, D. Sicking, et al. *Performance Evaluation of the Midwest Guardrail System Update to NCHRP Report 350 Test No. 3-11 (2214MG-1).* Research Report TRP-03-170-06, Midwest Roadside Safety Facility, Lincoln, Nebraska, 2006.
- Polivka, K., R. Faller, D. Sicking, et al. Performance Evaluation of the Midwest Guardrail System – Update to NCHRP Report 350 Test No. 3-11 with 28" C.G. Height (2214MG-2). Research Report TRP-03-171-06, Midwest Roadside Safety Facility, Lincoln, Nebraska, 2006.
- Faller, R., D. Sicking, R. Bielenberg, et al. "Performance of Steel-Post, W-Beam Guardrail Systems." *Transportation Research Record*, No. 2025, 2007, pp. 18–33.
- Polivka, K., D. Sicking, J. Rohde, et al. Development of the Midwest Guardrail System (MGS) for Standard and Reduced Post Spacing and in Combination with Curbs. Research Report TRP-03-139-04, Midwest Roadside Safety Facility, Lincoln, Nebraska, 2004.
- Bielenberg, R., R. Faller, J. Rohde, et al. Midwest Guardrail System for Long-Span Culvert Application. Research Report TRP-03-187-07, Midwest Roadside Safety Facility, Lincoln, Nebraska, 2007.
- Wiebelhaus, M., K. Lechtenberg, R. Faller, et al. Development and Evaluation of the Midwest Guardrail System (MGS) Placed Adjacent to a 2:1 Fill Slope. Research Report TRP-03-185-10, Midwest Roadside Safety Facility, Lincoln, Nebraska, 2010.
- Bligh, R., A. Abu-Odeh, and W. Menges. MASH Test 3-10 on 31-Inch W-Beam Guardrail with Standard Offset Blocks. Research Report 9-1002-4, Texas Transportation Institute, College Station, Texas, 2011.
- Williams, W., and W. Menges. MASH Test 3-11 of the W-Beam Guardrail on Low-Fill Box Culvert. Research Report 405160-23-2, Texas Transportation Institute, College Station, Texas, 2011.

- Stolle, C., K. Lechtenberg, J. Reid, et al. *Determination of the Maximum MGS Mounting Height Phase I Crash Testing*. Research Report TRP-03-255-12, Midwest Roadside Safety Facility, Lincoln, Nebraska, 2012.
- Schrum, K., K. Lechtenberg, R. Bielenberg, et al. Safety Performance Evaluation of the Non-Blocked Midwest Guardrail System (MGS). Research Report TRP-03-262-12, Midwest Roadside Safety Facility, Lincoln, Nebraska, 2013.
- Weiland, N., J. Reid, R. Faller, et al. *Minimum Effective Guardrail Length for the* MGS. Research Report TRP-03-276-13, Midwest Roadside Safety Facility, Lincoln, Nebraska, 2013.
- Rosenbaugh, S., R. Faller, K. Lechtenberg, et al. *Development and Evaluation of Weak-Post W-Beam Guardrail in Mow Strips*. Research Report TRP-03-322-15, Midwest Roadside Safety Facility, Lincoln, Nebraska, 2015.
- Jowza, E., R. Faller, S. Rosenbaugh, et al. Safety Investigation and Guidance for Retrofitting Existing Approach Guardrail Transitions. Research Report TRP-03-266-12, Midwest Roadside Safety Facility, Lincoln, Nebraska, 2012.
- 32. American Society for Testing and Materials (ASTM). *Standard Test Method for Compressive Strength of Bituminous Mixtures* (ASTM D1074-09). 2009.

APPENDIX RESEARCH REPORT TRP-03-377-17 FROM THE MIDWEST ROADSIDE SAFETY FACILITY

THIS PAGE INTENTIONALLY LEFT BLANK

Research Project Number RH099-S1

MASH 2016 TEST NO. 3-10 OF MGS INSTALLED IN AN ASPHALT MOW STRIP WITH NEARBY CURB (TEST NO. GAA-1)

Submitted by

Michael E. Sweigard Undergraduate Research Assistant Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Engineer

Ronald K. Faller, Ph.D., P.E. Research Associate Professor Director, MWRSF John D. Reid, Ph.D. Professor

Erin L. Urbank, B.A. Research Communication Specialist

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 NW 36th Street Lincoln, Nebraska 68524

Submitted to

GEORGIA INSTITUTE OF TECHNOLOGY

790 Atlantic Drive Atlanta, Georgia 30332

MwRSF Research Report No. TRP-03-377-17

December 14, 2017

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-377-17	2.	3. Recipient's Accession No.
4. Title and Subtitle MASH 2016 Test No. 3-10 of MC Nearby Curb (Test No. GAA-1)	5. Report DateDecember 14, 20176.	
7. Author(s) Sweigard, M.E., Lechtenberg, K.	A., Faller, R.K., Reid, J.D., and Urbank, E.L.	8. Performing Organization Report No. TRP-03-377-17
9. Performing Organization Name Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska-Lincoln		10. Project/Task/Work Unit No.
Main Office: Prem S. Paul Research Center at V Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Whittier School Outdoor Test Site: 4630 NW 36th Street Lincoln, Nebraska 68524	11. Contract © or Grant (G) No. RH099-S1
12. Sponsoring Organization Name and Address Georgia Institute of Technology 790 Atlantic Drive		13. Type of Report and Period Covered Final Report: 2016 – 2017
Atlanta, Georgia 30332		14. Sponsoring Agency Code
15. Supplementary Notes Prepared in cooperation with U.S	Department of Transportation, Federal Highway	Administration.
strong-beam, W-beam guardrail s The Midwest Roadside Safety F System (MGS) installed in an asy 2002. The test was conducted an found in the <i>Manual for Assessing</i> Test no. GAA-1 consisted of a	tudy was to evaluate the performance of a Georgi ystem with posts driven through an asphalt mow acility (MwRSF) conducted one full-scale crash ohalt shoulder with a nearby asphalt curb in acc d evaluated according to test designation no. 3- g Safety Hardware, Second Edition (MASH 2016 2,392-lb (1,085-kg) small car impacting the MG impact severity of 56.8 kip-ft (77 kJ). The vehicl	v strip with the inclusion of a nearby curb. n test on the standard Midwest Guardrail ordance with GDOT Standard Detail S-4- 10 using the Test Level 3 (TL-3) criteria 5). S at a speed of 62.8 mph (101.1 km/h) and

at an angle of 25.1 degrees for an impact severity of 56.8 kip-ft (77 kJ). The vehicle was contained, but it did not redirect the vehicle as it came to rest within the system. A 1-in. (25-mm) long tear was found in the vehicle's left-rear floor pan, the occupant compartment deformation limit for the roof exceeded the MASH 2016 limit, and a maximum longitudinal ORA value of -21.80 g's exceeded the MASH 2016 limit of 20.49 g's. Thus, the MGS installed in an asphalt mow strip with a curb placed behind the barrier was deemed to be unacceptable according to the TL-3 safety performance criteria for test designation no. 3-10 provided in MASH 2016.

17. Document Analysis/Descriptors		18. Availability Statement		
Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Asphalt, Mow Strip, Paved Shoulder, Curb, MGS, Midwest Guardrail System, Guardrail		No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161		
19. Security Class (this report) Unclassified20. Security Class (this page) Unclassified		21. No. of Pages 132	22. Price	

DISCLAIMER STATEMENT

This report was completed with funding from the Georgia Institute of Technology (GT). The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Georgia Institute of Technology. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Scott K. Rosenbaugh, Research Engineer.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) Georgia Department of Transportation and Georgia Institute of Technology for sponsoring the project and (2) MwRSF personnel for constructing the barrier and conducting the crash test.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Assistant Director – Physical Testing Division
R.W. Bielenberg, M.S.M.E., E.I.T., Research Engineer
J.D. Schmidt, Ph.D., P.E., Research Assistant Professor
C.S. Stolle, Ph.D., Research Assistant Professor
M. Asadollahi Pajouh, Ph.D., Post-Doctoral Research Associate
S.A. Ranjha, Ph.D., Post-Doctoral Research Associate
A.T. Russell, B.S.B.A., Testing and Maintenance Technician II
S.M. Tighe, Construction and Testing Technician I
D.S. Charroin, Construction and Testing Technician I
M.A. Rasmussen, Construction and Testing Technician I
E.W. Krier, B.S., Construction and Testing Technician I
M.T. Ramel, B.S.C.M., Construction and Testing Technician I
J.E. Kohtz, B.S.M.E., CAD Technician
Undergraduate and Graduate Research Assistants

Georgia Department of Transportation

Beau Quarles, P.E., Assistant State Construction Engineer Brent Story, P.E., State Design Policy Engineer David M. Jared, P.E., Assistant Office Head / Research Section Head, Office of Performance-based Management and Research

Georgia Institute of Technology

David Scott, Ph.D., Associate Professor, Civil and Environmental Engineering Don White, Ph.D., Professor, Civil and Environmental Engineering Jeremy Mitchell, Facility Manager, Civil and Environmental Engineering

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLES	ix
1 INTRODUCTION 1.1 Background 1.2 Objective/Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria 2.3 Soil Strength Requirements	
3 DESIGN DETAILS	
 4 TEST CONDITIONS	27 27 27 32 32 32 32 32 32 32 32 32 33
 5 FULL-SCALE CRASH TEST NO. GAA-1	36 36 36 38 39 40

5.8 Discussion	1	41
6 SUMMARY, CON	CLUSIONS, AND RECOMMENDATIONS	64
7 REFERENCES		66
8 APPENDICES		67
Appendix A.	Georgia DOT Standard Details - 2002 Revision	68
	Asphalt Core Test Results	
Appendix C.	Material Specifications	77
Appendix D.	Vehicle Center of Gravity Determination	. 104
Appendix E.	Static Soil Tests	. 106
Appendix F.	Vehicle Deformation Records	. 109
Appendix G.	Accelerometer and Rate Transducer Data Plots, Test No. GAA-1	. 115

LIST OF FIGURES

Figure 1. Test Installation Layout, Test No. GAA-1	5
Figure 2. Post and Curb Detail, Test No. GAA-1	
Figure 3. Splice Detail, Test No. GAA-1	
Figure 4. End Anchorage Detail, Test No. GAA-1	8
Figure 5. Anchorage Component Details, Test No. GAA-1	9
Figure 6. Post Nos. 3 through 29 and Plastic Blockout Details, Test No. GAA-1	
Figure 7. Additional Plastic Blockout Details, Test No. GAA-1	11
Figure 8. BCT Timber Posts and Foundation Tube Details, Test No. GAA-1	12
Figure 9. BCT Anchor Cable and Load Cell Detail, Test No. GAA-1	13
Figure 10. Modified BCT Anchor Cable Detail, Test No. GAA-1	14
Figure 11. Shackle and Eye Nut Detail, Test No. GAA-1	15
Figure 12. BCT Post Components and Anchor Bracket Details, Test No. GAA-1	16
Figure 13. Ground Strut Details, Test No. GAA-1	17
Figure 14. Rail Section Details, Test No. GAA-1	
Figure 15. Guardrail Hardware Details, Test No. GAA-1	19
Figure 16. Bill of Materials, Test No. GAA-1	20
Figure 17. Bill of Materials, Test No. GAA-1	21
Figure 18. Test Construction, Test No. GAA-1	22
Figure 19. Test Construction - Soil and Asphalt Heating, Test No. GAA-1	23
Figure 20. Test Installation, Test No. GAA-1	
Figure 21. Test Installation, Test No. GAA-1	25
Figure 22. End Anchorages, Test No. GAA-1	26
Figure 23. Test Vehicle, Test No. GAA-1	
Figure 24. Test Vehicle's Interior Floorboards, Test No. GAA-1	29
Figure 25. Vehicle Dimensions, Test No. GAA-1	
Figure 26. Target Geometry, Test No. GAA-1	31
Figure 27. Location of Load Cell (Downstream Anchorage)	34
Figure 28. Location of Load Cell (Upstream Anchorage)	34
Figure 29. Camera Locations, Speeds, and Lens Settings, Test No. GAA-1	35
Figure 30. Summary of Test Results and Sequential Photographs, Test No. GAA-1	42
Figure 31. Additional Sequential Photographs, Test No. GAA-1	43
Figure 32. Additional Sequential Photographs, Test No. GAA-1	
Figure 33. Documentary Photographs, Test No. GAA-1	45
Figure 34. Impact Location, Test No. GAA-1	
Figure 35. Vehicle Final Position and Trajectory Marks, Test No. GAA-1	47
Figure 36. Vehicle Final Position, Test No. GAA-1	
Figure 37. System Damage, Test No. GAA-1	49
Figure 38. System Damage – Post Nos. 4 through 15, Test No. GAA-1	
Figure 39. System Damage – Post Nos. 16 through 27, Test No. GAA-1	51
Figure 40. Post No. 12 Damage, Test No. GAA-1	52
Figure 41. Post No. 13 Damage, Test No. GAA-1	53
Figure 42. Post No. 14 Damage, Test No. GAA-1	
Figure 43. Damage to Post Nos. (a) 15 and (b) 16, Test No. GAA-1	55
Figure 44. Upstream End Anchor Movement, Test No. GAA-1	
Figure 45. Downstream End Anchorage Movement, Test No. GAA-1	57

Figure 46. Post Nos. 28 and 29, Downstream End Anchorage, Test No. GAA-1	58
Figure 47. Vehicle Damage, Test No. GAA-1	59
Figure 48. Vehicle Damage, Test No. GAA-1	60
Figure 49. Occupant Compartment Deformation, Test No. GAA-1	61
Figure 50. Vehicle Undercarriage Damage, Test No. GAA-1	62
Figure 51. SAE CFC60 Longitudinal Acceleration (SLICE-1 and SLICE-2), Test No.	
GAA-1	
Figure A-1. Georgia DOT Construction Detail S-4	69
Figure A-2. Georgia DOT Construction Detail S-4	
Figure A-3. Georgia DOT Asphalt Curb Detail	
Figure C-1. Asphalt Mix, Test No. GAA-1	
Figure C-2. W-beam Guardrail at Post Nos. 1 through 26, 28, and 29, Test No. GAA-1	
Figure C-3. W-Beam Guardrail at Post No. 27, Test No. GAA-1	81
Figure C-4. W6x8.5 Posts, Post Nos. 3 through 9, 13 through 14, and 16 through 27, Test	
No. GAA-1	
Figure C-5. W6x8.5 Posts, Post Nos. 10 through 12, Test No. GAA-1	
Figure C-6. W6x8.5 Posts, Post No. 15, Test No. GAA-1	
Figure C-7. Composite Blockout, Test No. GAA-1	
Figure C-8. BCT Timber Post, Post Nos. 1 and 2, Test No. GAA-1	
Figure C-9. BCT Timber Post, Post Nos. 28 and 29, Test No. GAA-1	
Figure C-10. Foundation Tubes, Test No. GAA-1	
Figure C-11. Ground Strut Assembly, Test No. GAA-1	
Figure C-12. BCT Post Sleeve, Test No. GAA-1	
Figure C-13. Anchor Bearing Plate and Bracket Assembly, Test No. GAA-1	91
Figure C-14. BCT Cable Anchor Assembly, Test No. GAA-1	
Figure C-15. BCT Cable Anchor Assembly, Test No. GAA-1	
Figure C-16. 10-in. (254-mm) Post Bolts, Test No. GAA-1	
Figure C-17. ⁵ / ₈ -in. (16-mm) Dia. Nut, Test No. GAA-1	
Figure C-18. 1 ¹ / ₄ -in. (32-mm) Splice Bolts, Test No. GAA-1	
Figure C-19. 10-in. (254-mm) Hex Bolts, Test No. GAA-1	
Figure C-20. 1 ¹ / ₂ -in. (38-mm) Splice Bolts, Test No. GAA-1	
Figure C-21. 1 ¹ / ₂ -in. (38-mm) Splice Bolts, Test No. GAA-1	
Figure C-22. 1 ¹ / ₂ -in. (38-mm) Splice Bolts, Test No. GAA-1	
Figure C-23. ⁵ / ₈ -in. (16-mm) Dia. Hex Nut, Test No. GAA-1	
Figure C-24. 7/8-in. (22-mm) Dia., 8-in. (203-mm) Long Hex Bolt, Test No. GAA-1	
Figure C-25. ⁷ / ₈ -in. (22-mm) Dia. Hex Nut, Test No. GAA-1	
Figure D-1. Vehicle Mass Distribution, Test No. GAA-1	
Figure E-1. Soil Strength, Initial Calibration Tests, Test No. GAA-1	
Figure E-2. Static Soil Test, Test No. GAA-1	
Figure F-1. Floor Pan Deformation Data – Set 2, Test No. GAA-1	
Figure F-2. Occupant Compartment Deformation Data – Set 2, Test No. GAA-1	
Figure F-3. Exterior Vehicle Crush (NASS) - Front, Test No. GAA-1	
Figure F-4. Exterior Vehicle Crush (NASS) - Side, Test No. GAA-1	
Figure F-5. Windshield Crush, Test No. GAA-1	
Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. GAA-1	
Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. GAA-1	
Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. GAA-1	118

Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. GAA-1	119
Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. GAA-1	120
Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. GAA-1	121
Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. GAA-1	122
Figure G-8. Acceleration Severity Index (SLICE-1), Test No. GAA-1	123
Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. GAA-1	124
Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. GAA-1	125
Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. GAA-1	126
Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. GAA-1	127
Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. GAA-1	128
Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. GAA-1	129
Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. GAA-1	130
Figure G-16. Acceleration Severity Index (SLICE-2), Test No. GAA-1	131

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	2
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier	
Table 3. Weather Conditions, Test No. GAA-1	
Table 4. Sequential Description of Impact Events, Test No. GAA-1	
Table 5. Maximum Occupant Compartment Deformations by Location	
Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. GAA-1	40
Table 7. Summary of Safety Performance Evaluation Results	
Table C-1. Bill of Materials, Test No. GAA-1	

1 INTRODUCTION

1.1 Background

The Georgia Department of Transportation (GDOT) is currently investigating the performance of a strong-beam, W-beam guardrail system with posts driven through an asphalt mow strip, which may also be referred to as a paved shoulder, with the inclusion of a nearby curb. Midwest Roadside Safety Facility (MwRSF) of the University of Nebraska-Lincoln (UNL) was contracted to conduct a full-scale crash test on the standard Midwest Guardrail System (MGS) installed in an asphalt mow strip with a nearby curb in accordance with GDOT Standard Detail S-4-2002 and typical curb detail, shown in Appendix A.

1.2 Objective/Scope

The objective of this research study was to evaluate the safety performance of the MGS with shoulder paving and surfacing under the barrier as well as a curb placed behind the barrier. The system was to be evaluated according to the Test Level 3 (TL-3) criteria found in the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [1]. One full-scale crash test was conducted according to MASH 2016 test designation no. 3-10. Data obtained from this crash test was analyzed, and the results were utilized to make conclusions and recommendations.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as W-beam guardrails, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [1]. Note that there is no difference between MASH 2009 and MASH 2016 for most longitudinal barriers, such as the guardrail system tested and evaluated in this project. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1.

	Test		Vehicle	Impact C	onditions	
Test Article	Designation No.	Test Vehicle	Weight, lb (kg)	Speed, mph (km/h)	Angle, deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,425 (1,100)	62.0 (100.0)	25	A,D,F,H,I
Barrier	3-11	2270P	5,000 (2,268)	62.0 (100.0)	25	A,D,F,H,I

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the barrier (i.e., W-beam guardrail system installed in an asphalt mow strip with a curb placed behind the barrier) to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash test was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

2.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, additional W6x16 (W152x23.8) posts are installed along the barrier system in critical regions, such as near the impact point and the end anchorages, utilizing the same installation procedures as the system itself. Prior to full-scale crash testing, a dynamic impact (i.e., bogie) test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips (33.4 kN) at post deflections between 5 and 20 in. (127 and 508 mm) measured at a height of 25 in. (635 mm). If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted in lieu of the bogie test, where the new results are compared to the results from a previously-established baseline test. In this situation, the soil must provide a resistance of at least 90% of the static baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Further details can be found in Appendix B of MASH 2016.

Table 2. MASH 2016 Evaluation	Criteria for	I ongitudinal Barrier
Table 2. MASTI 2010 Evaluation	Chieffa 101	Longhuumai Darrici

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				
	D.	should not penetrate or show compartment, or present an un or personnel in a work zone. I occupant compartment should	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.			
	F.	The vehicle should remain u maximum roll and pitch angle				
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
Risk		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant Ridedown Acceleration Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		

3 DESIGN DETAILS

The test installation measured $182 \text{ ft} - 3\frac{1}{2} \text{ in.} (55.6 \text{ m}) \log$ and consisted of standard MGS installed in an asphalt mow strip and with a curb placed behind the barrier, as shown in Figures 1 through 17. A second guardrail system was installed behind the primary system (test no. GAA-1) for the subsequent test in this series that was not conducted. Photographs of test construction and installation are shown in Figures 18 through 22. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix C.

Standard 12-gauge (2.7-mm) thick W-beam rail segments were supported by 72-in. (1,829mm) long, W6x8.5 (W152x12.6) steel posts. The W-beam rail was mounted with a top-rail height of 32 in. (813 mm). Rail splices were located at midspans between posts, as shown in Figure 3. The lap splice connections between the rail sections were configured to reduce the potential for vehicle snag at the splice during impact. The posts were spaced at 75 in. (1,905 mm) on center. Holes 36 in. (914 mm) wide were cored and filled with densely-compacted, coarse crush limestone strong soil at post locations before asphalt was laid, as recommended by MASH 2016 [1]. Post nos. 10 through 21 were driven through the approximately 3½-in. (89-mm) thick asphalt mow strip to an embedment depth of 39 in. (991 mm). A Mondo Polymer MGS14SH [2] blockout was used to offset the rail away from the front face of each steel post.

The upstream and downstream ends of the guardrail installation were configured with a trailing-end anchorage system. The guardrail anchorage system was utilized to simulate the tensile strength of other crashworthy end terminals. Each anchorage system consisted of timber posts, foundation tubes, anchor cables, bearing plates, rail brackets, and channel struts, which closely resembled the hardware used in the Modified BCT system and was consistent with hardware used in a crashworthy, downstream trailing end terminal [3-6]. Load cell assemblies were spliced into the upstream and downstream anchorage anchor cables to measure the loads experienced during full-scale crash testing.

A one-layer 75-ft (22.9-m) long by 3¹/₂-in. (89-mm) thick asphalt mow strip was located below the guardrail system. A 5-in. (127-mm) tall by 8-in. (203-mm) wide asphalt curb was placed 39 in. (991 mm) behind the front face of the guardrail or 14¹/₈ in. (359 mm) behind the back face of the posts. The total width of the asphalt mow strip behind the back face of the post was approximately 23 in. (584 mm). According to GDOT specifications, 12.5 mm Superpave asphalt should be used. This was substituted with NE SPR Binder PG 64-22 asphalt. Asphalt cores were taken from the downstream end, upstream end, and impact region of the system to evaluate asphalt thickness. Testing at the Structural Engineering Mechanics and Materials Laboratory at Georgia Institute of Technology found that core thickness ranged from 3³/₄ in. (95 mm) to 4¹/₄ in. (108 mm) and the asphalt demonstrated an average compressive strength of approximately 400 psi. Further details are provided in Appendix B.

A heating system was used to ensure that the soil was not frozen during construction and before the full-scale crash test was conducted, as seen in Figure 19. The heating system is capable of thawing 18 in. (457 mm) of soil over a 12-hour period. Holes were drilled through the asphalt and into the frozen soil. Soil temperature was taken at a depth of 3 ft (914 mm) using an infrared thermometer probe. Prior to conducting the crash test, the soil temperature at bottom of the holes was approximately 60 degrees.

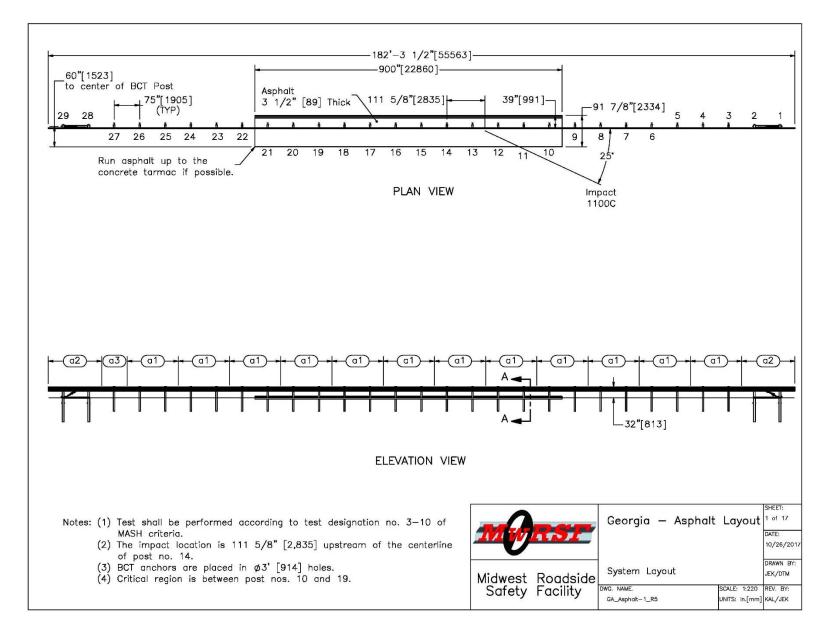


Figure 1. Test Installation Layout, Test No. GAA-1

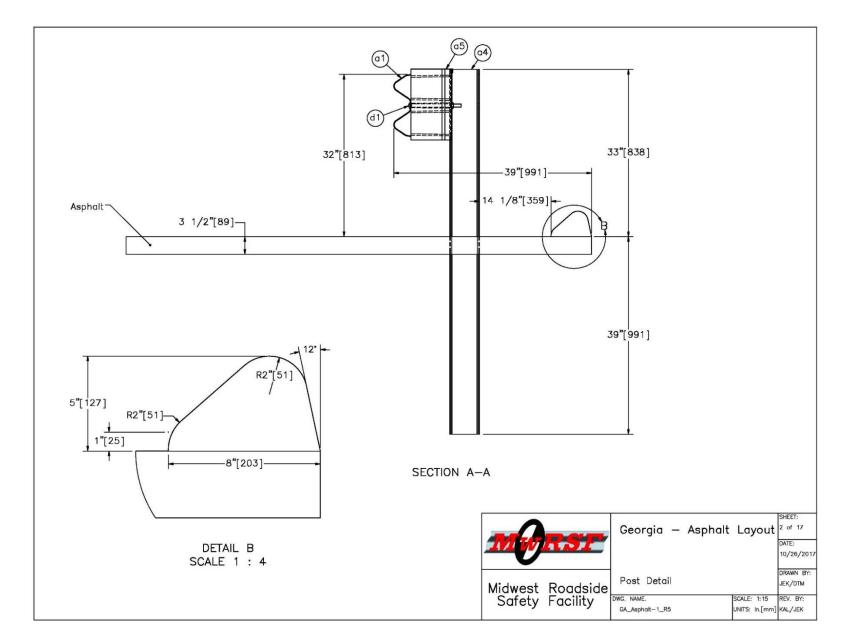


Figure 2. Post and Curb Detail, Test No. GAA-1

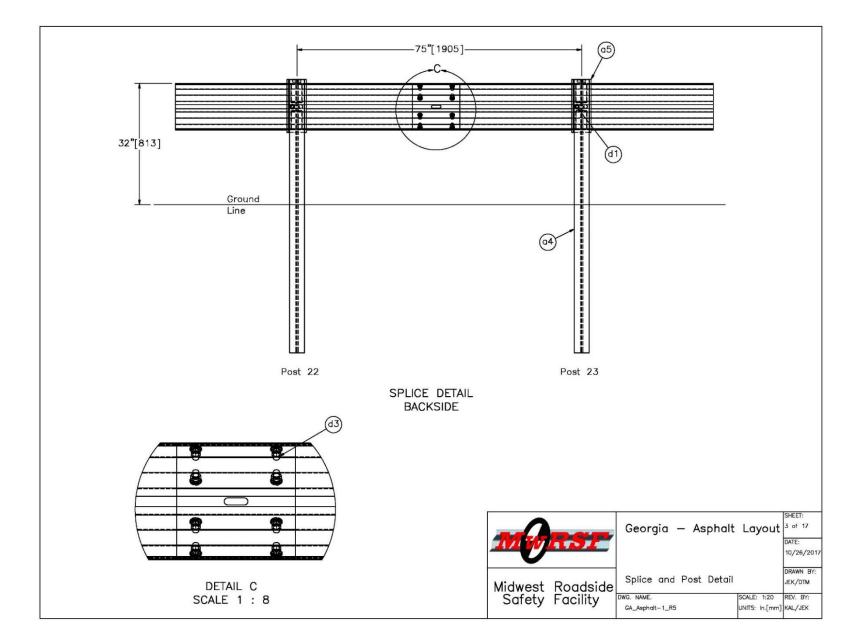


Figure 3. Splice Detail, Test No. GAA-1

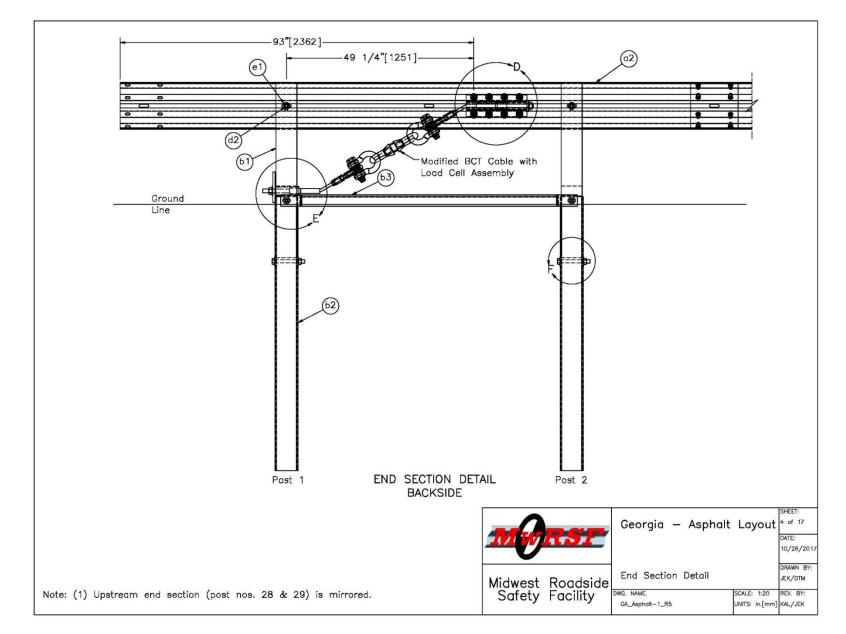


Figure 4. End Anchorage Detail, Test No. GAA-1

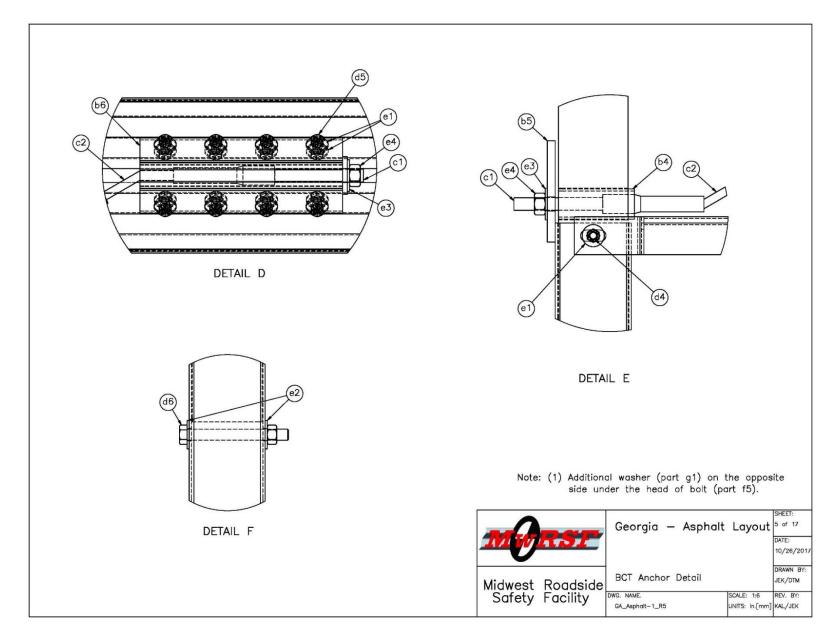


Figure 5. Anchorage Component Details, Test No. GAA-1

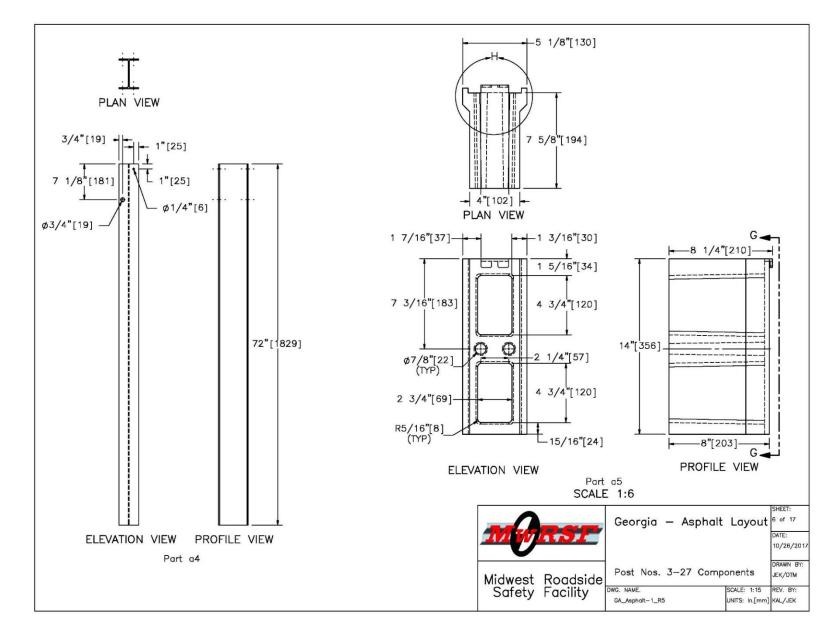


Figure 6. Post Nos. 3 through 29 and Plastic Blockout Details, Test No. GAA-1

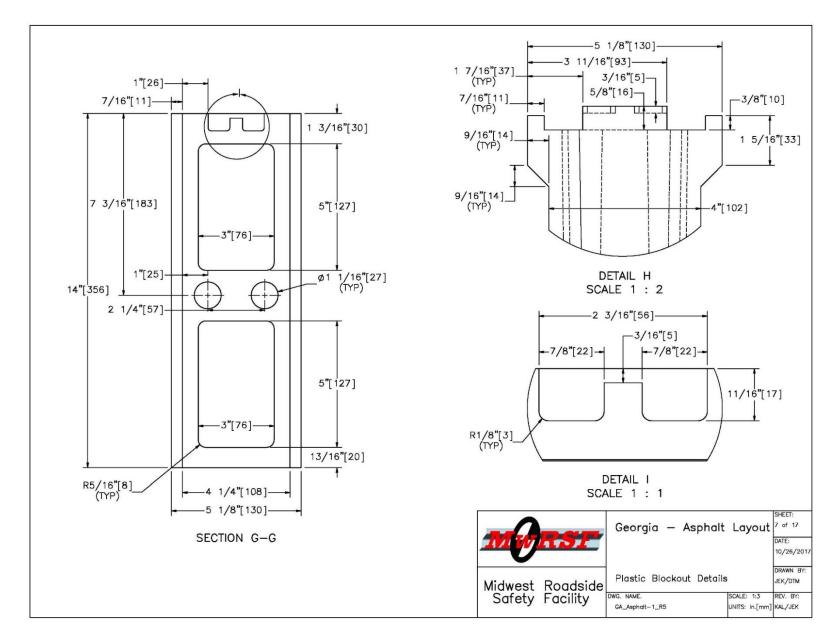


Figure 7. Additional Plastic Blockout Details, Test No. GAA-1

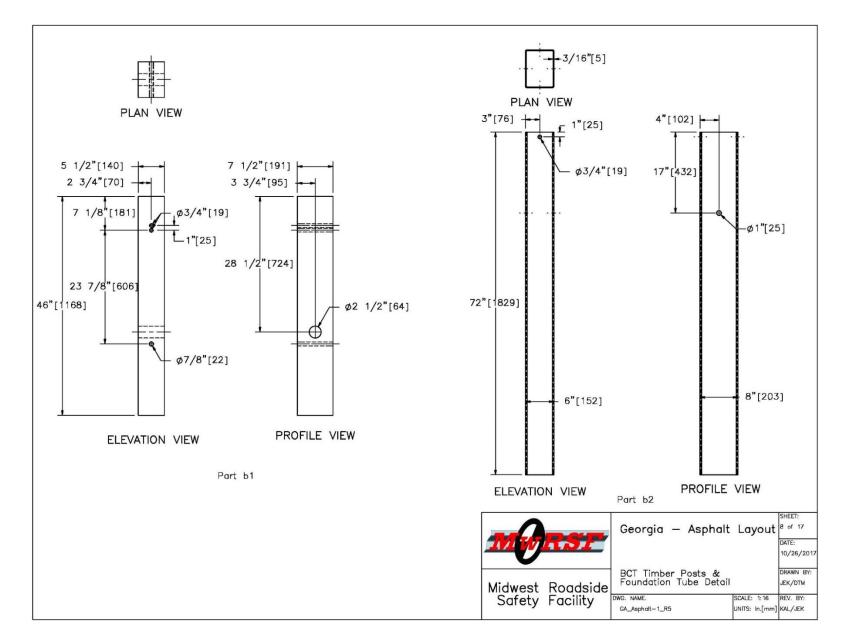


Figure 8. BCT Timber Posts and Foundation Tube Details, Test No. GAA-1

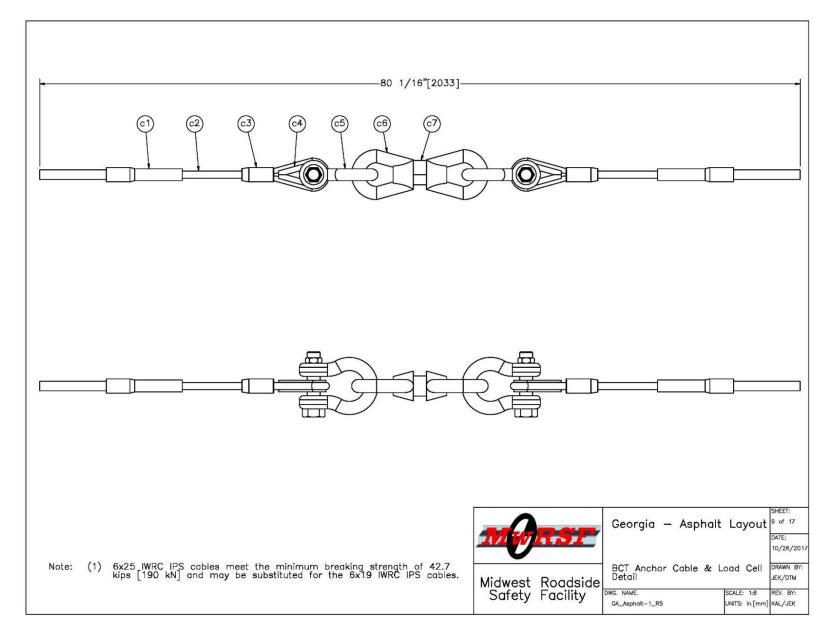


Figure 9. BCT Anchor Cable and Load Cell Detail, Test No. GAA-1

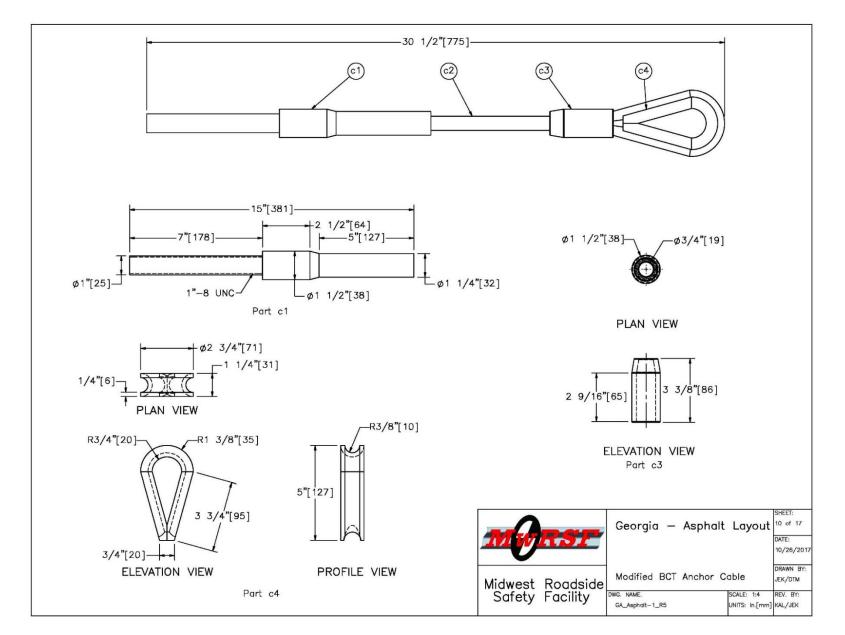


Figure 10. Modified BCT Anchor Cable Detail, Test No. GAA-1

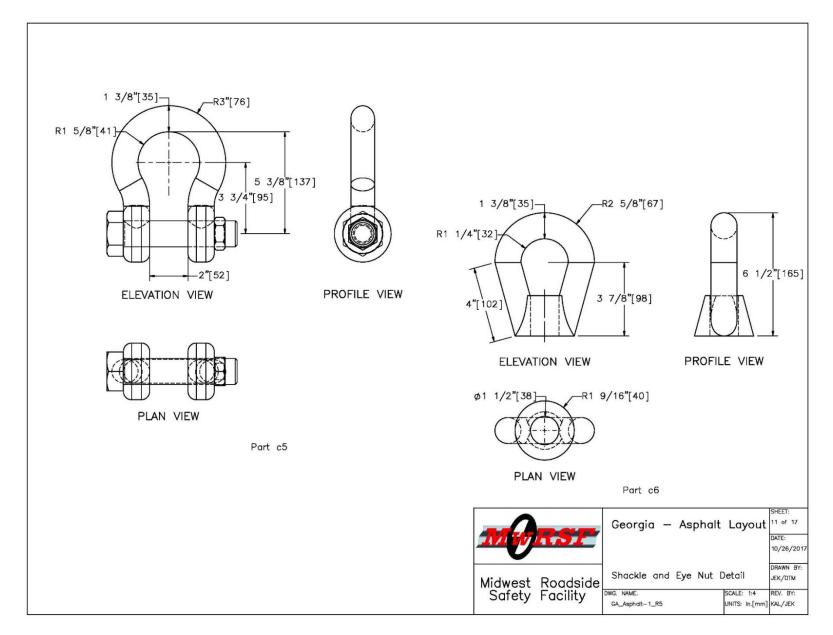


Figure 11. Shackle and Eye Nut Detail, Test No. GAA-1

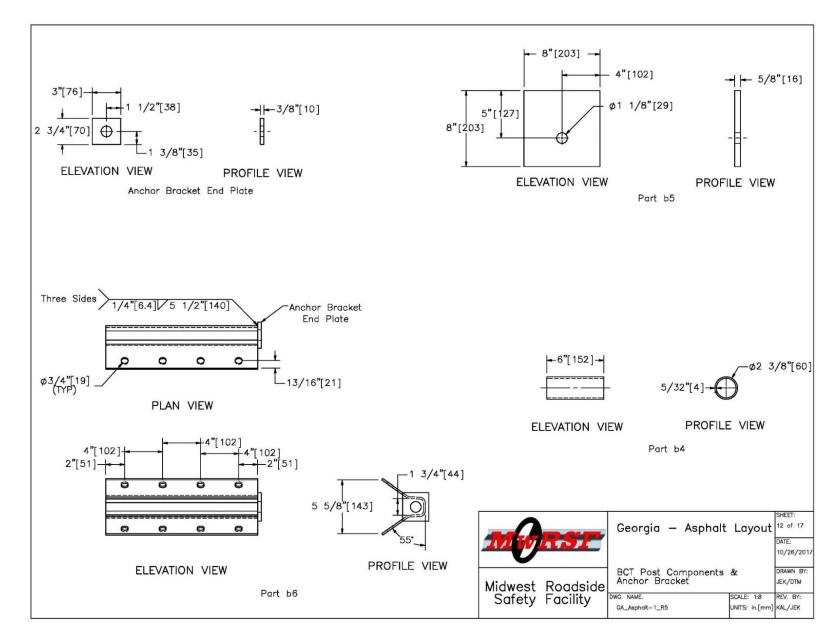


Figure 12. BCT Post Components and Anchor Bracket Details, Test No. GAA-1

Figure 13. Ground Strut Details, Test No. GAA-1

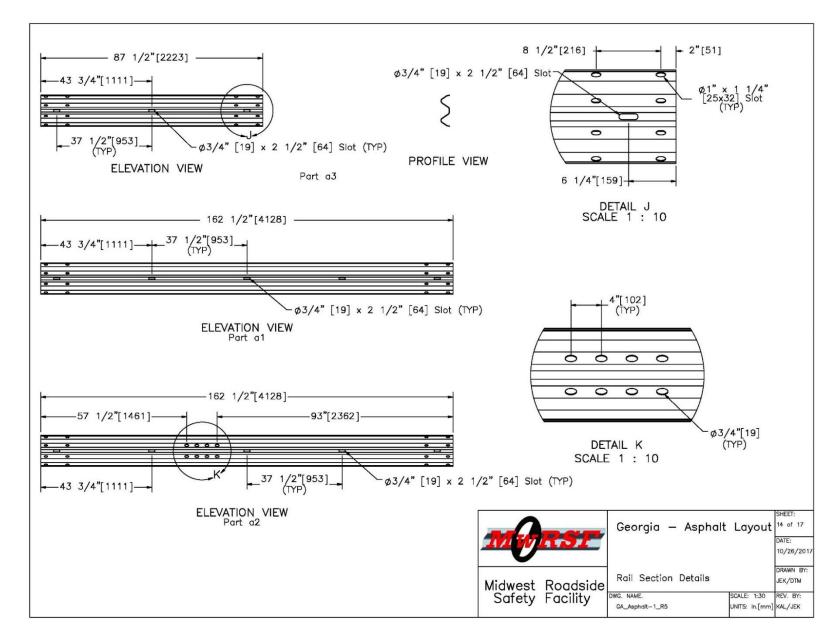


Figure 14. Rail Section Details, Test No. GAA-1

18

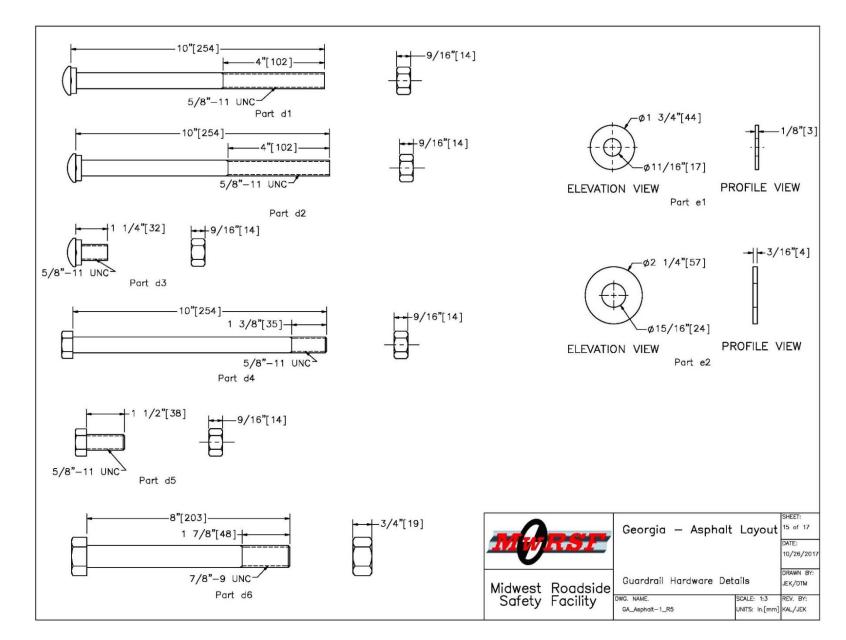


Figure 15. Guardrail Hardware Details, Test No. GAA-1

19

ltem No.	QTY.	Description	Material Specification	Galvanization Specification	Hardware Guide
-	1	Asphalt	GA 12.5 mm Superpave (NE SPR Binder PG 64-22)	-	-
-	1	Curb	GA 4.75 mm or 9.5 mm Superpave Level A Mixture (NE SPR Binder PG 64—22)	-	-
a1	12	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a2	2	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a
a3	1	6'-3" [1,905] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a4	25	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1,829] Long Steel Post	ASTM A992	ASTM A123	PWE06
a5	25	5 1/8"x8"x14" [130x203x356] Composite Recycled Blockout	Mondo Polymer MGS14SH or Equivalent	-	-
Ь1	4	BCT Timber Post – MGS Height	SYP Grade No. 1 or better (No knots +/- 18" [457] from ground on tension face)	_	-
b2	4	72" [1829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
b3	2	Ground Strut Assembly	ASTM A36	ASTM A123	PFP02
b4	2	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
b5	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
b6	2	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
c1	4	BCT Anchor Cable End Swaged Fitting	Fitting – ASTM A576 Gr. 1035 Stud – ASTM F568 Class C	Fitting – ASTM A153 Stud – ASTM A153 or B695	-
c2	4	3/4" [190] Dia. 6x19, 24 1/2" [622] Long IWRC IPS Wire Rope	IPS	ASTM A741 Type II Class A	-
c3	4	115-HT Mechanical Splice - 3/4" [19] Dia.	As Supplied	-	-
c4	4	Crosby Heavy Duty HT - 3/4" [19] Dia. Cable Thimble	Stock No. 1037773	As Supplied	-
c5		Crosby G2130 or S2130 Bolt Type Shackle — 1 1/4" [32] Dia. with thin head bolt, nut, and cotter pin, Grade A, Class 3	Stock Nos. 1019597 and 1019604 — As Supplied	1000	-
c6	4	Chicago Hardware Drop Forged Heavy Duty Eye Nut — Drilled and Tapped 1 1/2" [38] Dia. — UNC 6 [M36x4]	Stock No. 107 - As Supplied	-	-
c7	2	TLL-50K-PTB Load Cell	-	-	-

		Georgia — Asphalt Layout	SHEET: 16 of 17
	17.1		DATE: 10/26/201
Midwest	Roadside	Bill of Materials	DRAWN BY: JEK/DTM
Safety		DWG. NAME. SCALE: None GA_Asphalt-1_R5 UNITS: in.[mm]	REV. BY: KAL/JEK

Figure 16. Bill of Materials, Test No. GAA-1

ltem No.	QTY.	Description	Material Specification	Galvanization Specification	Hardware Guide
d1	25	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB03
d2	4	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB03
d3	114	5/8" [16] Dia. UNC, 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt – AS⊺M A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB01
d4	4	5/8" [16] Dia. UNC, 10" [254] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
d5	16	5/8" [16] Dia. UNC, 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
d6	4	7/8" [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	-
e1	44	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
e2	8	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	-
e3	4	1" [25] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC24a
e4	4	1" [25] Dia. Hex Nut	ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX24a

		Georgia — Asphalt Layout	SHEET: 17 of 17
	17774		DATE: 10/26/2017
Midwest Roadside		Bill of Materials	DRAWN BY: JEK/DTM
Safety	Facility	DWG. NAME. SCALE: None GA_Asphalt-1_R5 UNITS: In.[mm]	REV. BY: KAL/JEK

Figure 17. Bill of Materials, Test No. GAA-1

Figure 18. Test Construction, Test No. GAA-1

22

Figure 19. Test Construction – Soil and Asphalt Heating, Test No. GAA-1

December 14, 2017 MwRSF Report No. TRP-03-377-17

Figure 20. Test Installation, Test No. GAA-1

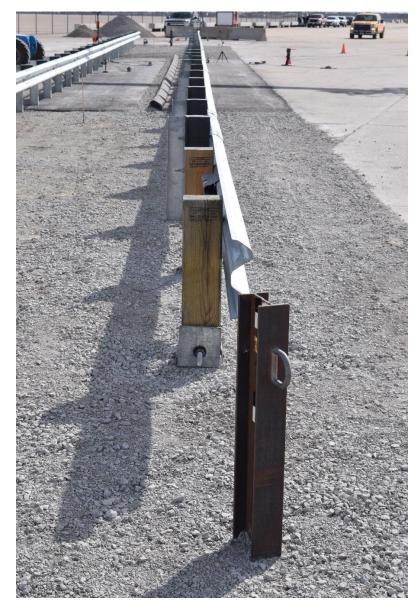


Figure 21. Test Installation, Test No. GAA-1

Upstream Anchorage

Downstream Anchorage

Figure 22. End Anchorages, Test No. GAA-1

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [7] was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable. As the vehicle was towed down the cable line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. GAA-1, a 2011 Kia Rio was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,326 lb (1,055 kg), 2,392 lb (1,085 kg), and 2,552 lb (1,158 kg), respectively. The test vehicle is shown in Figures 23 and 24, and vehicle dimensions are shown in Figure 25.

The longitudinal component of the center of gravity (c.g.) was estimated using the measured axle weights. The vertical component of the c.g. for the 1100C vehicle was determined utilizing a procedure published by SAE [8]. The location of the final c.g. is shown in Figures 25 and 26. Data used to calculate the location of the c.g. and ballast information are shown in Appendix D.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figure 26. Round, checkered targets were placed on the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero so that the vehicle would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's left-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

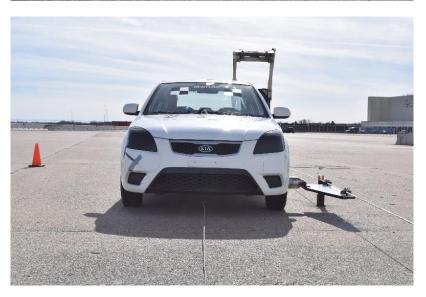


Figure 23. Test Vehicle, Test No. GAA-1

Figure 24. Test Vehicle's Interior Floorboards, Test No. GAA-1

December 14, 2017 MwRSF Report No. TRP-03-377-17

29

Date:	2/14/2017	_	Test Number:	GA	A-1	VIN:	KNADH4	A36B691	5197
Year:	2011		Make:	к	ia	Model:		Rio	
Tire Size:	175/R14	Tire Infla	ation Pressure:	32	Psi	Odometer:	1	07384	
_						Vehicle G Target Range	eometry - in. (s listed below	(mm)	
				Q vehicle	n t	65±3 (16 c: <u>167 1/4</u> 169±8 (43	(4248) d: 300±200) (2499) f: 00±125)	34 3/4 33 ^{35±4 (9} 39 1/2	(1467) (883) (838) 00±100) (1003) 90±100)
						i: <u>8 7/8</u>	(225) j:	19	(483)
		8	M		1	k: <u>11 1/2</u>	(292) I:	23 3/4	(603)
1					b b	m: <u>67 3/4</u>	(1467) n:	58	(1473) 425+50)
				k	9	o: <u>30 3/8</u> 24±4 (60	(772) p:	2 1/4	(57)
	f h ∀Wfro	e	d √W _{rear}	1		q: <u>23 6/8</u>	(600) r:	15 1/4	(387)
	- • • • • • • • • • • • • • • • • • • •	nt c	✓ "rear			s: _ 7 5/8	(194)t:	65 1/2	(1664)
	tribution lb (kg)					Тор	of radiator core		
Gross Static			(349)				support: Wheel Center		(749)
	LR <u>509</u> (23	<u>1)</u> RR <u>528</u>	(239)				Height (Front): Wheel Center	11	(279)
Weights							Height (Rear): Wheel Well	11	(279)
lb (kg)	Curb	Test	Inertial	Gross	Static	Cle	arance (Front): Wheel Well	25 3/4	(654)
W-front	1450 (65	8) 1432	(650)	1515	(687)	- Cl	earance (Rear): Bottom Frame	24 3/4	(629)
W-rear	876 (39	7) 960	(435)	1037	(470)	-	Height (Front): Bottom Frame	6 7/8	(175)
W-total	2326 (10)		(1085) 5 (1100±25)	2552 2585±55	(1158)	-	Height (Rear):	15 5/8	(397)
			- (,			I	Engine Type:	Gas	oline
GVWR Rating	s lb	Dummy	Data				Engine Size:	1.	6L
Front:	1918		Туре:	Hyb	rid II	Transn	nission Type:	Mai	nual
Rear:	1874		Mass:	160) lb		Drive Type:	FV	VD
Total: _	3638		Seat Position:	Dri	ver				
Note any	/ damage prior to t	est:			nc	one			

Figure 25. Vehicle Dimensions, Test No. GAA-1

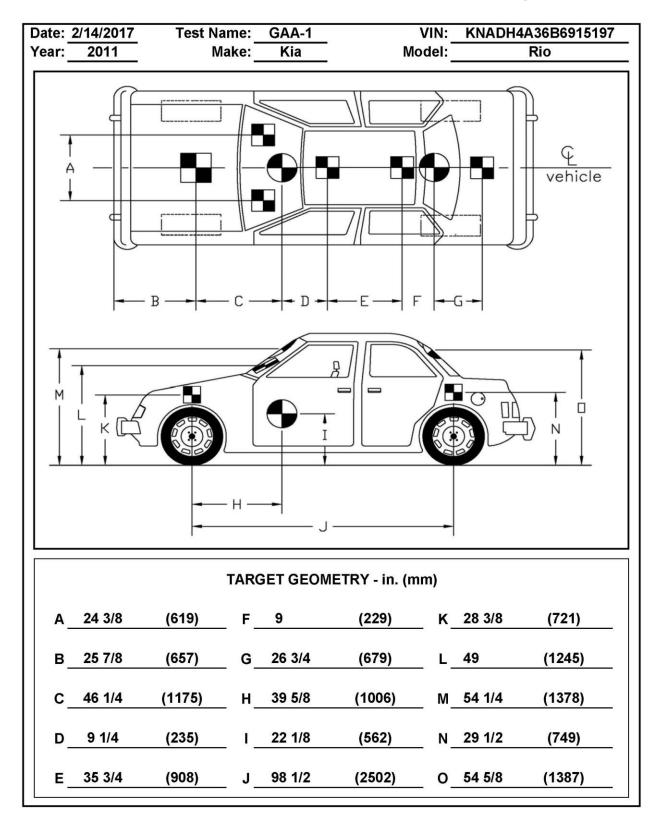


Figure 26. Target Geometry, Test No. GAA-1

4.4 Simulated Occupant

For test no. GAA-1, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the right-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of 160 lb (73 kg), was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH 2016, the dummy was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both of the accelerometers were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [9].

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system. The acceleration sensors were mounted inside the bodies of custom-built SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angle rate sensor systems were mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders and were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Load Cells

Load cells were installed on the upstream and downstream anchor cables for test no. GAA-1. The load cells were Transducer Techniques model no. TLL-50K with a load range up to 50 kips (222 kN). During testing, output voltage signals were sent from the transducers to a National Instruments PCI-6071E data acquisition board, acquired with LabView software, and stored on a personal computer at a sample rate of 10,000 Hz. The positioning and set up of the transducers are shown in Figures 27 and 28. Note that the load cell data was deemed to be erroneous and was not used, as detailed in Section 5.7.

4.5.5 Digital Photography

Five AOS high-speed digital video cameras, eight GoPro digital video cameras, and four JVC digital video cameras were utilized to film test no. GAA-1. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 29.

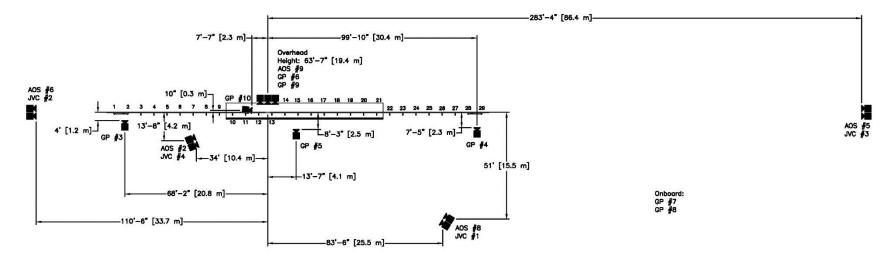

The high-speed videos were analyzed using ImageExpress MotionPlus and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and post-test conditions for the test.

Figure 27. Location of Load Cell (Downstream Anchorage)

Figure 28. Location of Load Cell (Upstream Anchorage)

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-2	AOS Vitcam CTM	500	KOWA 25 mm Fixed	-
AOS-5	AOS X-PRI Gigabit	500	VIVITAR 135 mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	SIGMA 28-70	70
AOS-8	AOS S-VIT 1531	500	SIGMA 28-70 DG	70
AOS-9	AOS TRI-VIT	500	KOWA 12 mm Fixed	-
GP-3	GoPro Hero 3+	120		
GP-4	GoPro Hero 3+	120		
GP-5	GoPro Hero 3+	120		
GP-6	GoPro Hero 3+	120		
GP-7	GoPro Hero 4	120		
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	240		
GP-10	GoPro Hero 4	240		
JVC-1	JVC – GZ-MC500 (Everio)	29.97		
JVC-2	JVC – GZ-MG27u (Everio)	29.97		
JVC-3	JVC – GZ-MG27u (Everio)	29.97		
JVC-4	JVC – GZ-MG27u (Everio)	29.97		

Figure 29. Camera Locations, Speeds, and Lens Settings, Test No. GAA-1

5 FULL-SCALE CRASH TEST NO. GAA-1

5.1 Static Soil Test

Before full-scale crash test no. GAA-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix E, demonstrated that the post-soil resistance was above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Weather Conditions

Test no. GAA-1 was conducted on February 14, 2017 at approximately 2:15 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Temperature	53° F
Humidity	32 %
Wind Speed	17 mph
Wind Direction	320° from True North
Sky Conditions	Overcast
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0 in.
Previous 7-Day Precipitation	0.01 in.

Table 3. Weather Conditions, Test No. GAA-1

5.3 Test Description

The small car, with a test inertial weight of 2,392 lb (1,085 kg), impacted the strong-post, W-beam guardrail system installed with posts driven into an asphalt mow strip with a curb placed behind the barrier at a speed of 62.8 mph (101.1 km/h) and at an angle of 25.1 degrees. A summary of the test results and sequential photographs are shown in Figure 30. Additional sequential photographs are shown in Figure 33. Note that a second guardrail system was installed behind the primary barrier system (test no. GAA-1) for the subsequent test in this series that was not conducted. The second system is visible in the sequential, documentary, and damage photographs.

Initial vehicle impact was to occur 111⁵/₈ in. (2,835 mm) upstream from the centerline of post no. 14., as shown in Figure 34, which was selected using the CIP plots found in Section 2.3 of MASH 2016 to maximize vehicle pocketing, wheel snag, and the propensity for rail rupture. The actual point of impact was 104.3 in. (2,649 mm) upstream from the centerline of post no. 14. A sequential description of the impact events is contained in Table 4. The vehicle came to rest underneath the guardrail approximately 296 in. (7,518 mm) downstream from the impact point. The vehicle's trajectory and final position are shown in Figures 30, 35, and 36.

TIME (sec)	EVENT			
0.000	Vehicle's right-front bumper contacted rail between post nos. 12 and 13 and deformed.			
0.005	Post no. 13 deflected backward.			
0.010	Post no. 11 twisted clockwise. Vehicle right headlight shattered.			
0.024	Vehicle's right-front door contacted rail and deformed.			
0.028	Vehicle's right A-pillar deformed.			
0.038	Vehicle's right-front tire contacted post no. 13.			
0.041	Vehicle underrode rail.			
0.052	Rail disengaged from bolt at post no. 13.			
0.062	Vehicle's right-side airbag deployed.			
0.064	Vehicle pitched downward and left-side airbag deployed.			
0.068	Vehicle's windshield shattered from right-side airbag deployment.			
0.074	Post no. 14 deflected downstream.			
0.082	Vehicle front bumper contacted post no. 14.			
0.092	Rail disengaged from bolt at post no. 10.			
0.098	Vehicle's right mirror contacted rail and deformed.			
0.104	Rail disengaged from bolt at post no. 14. Vehicle's right-front bumper disengaged.			
0.120	Rail disengaged from bolt at post no. 6.			
0.136	Rail disengaged from bolt at post no. 8.			
0.138	Rail disengaged from bolts at post nos. 4 and 7.			
0.182	Vehicle's left-front tire became airborne.			
0.186	Rail disengaged from bolt at post no. 12. Vehicle's left-front bumper disengaged. Vehicle's front bumper contacted post no. 15.			
0.202	Blockout no. 15 disengaged from rail at post no. 15.			
0.207	Vehicle's left-front headlight disengaged and blockout no. 15 disengaged from post no. 15.			
0.220	Vehicle's right A-pillar contacted rail.			
0.285	Vehicle underrode rail and rail disengaged from bolt at post no. 16.			
0.348	Vehicle contacted post no. 16.			
0.360	Vehicle's roof underrode rail.			
0.526	Vehicle contacted post no. 17.			
0.648	Rail disengaged from bolt at post no. 17.			
1.217	Vehicle came to rest.			

Table 4. Sequential Description of Impact Events, Test No. GAA-1

5.4 Barrier Damage

Damage to the barrier was extensive, as shown in Figures 37 through 44. Barrier damage consisted of rail deformation, contact marks on the front face of the guardrail, guardrail disengagement from posts, deformed steel posts, and asphalt gouging. The length of vehicle contact along the barrier was approximately 27 ft – $7\frac{5}{8}$ in. (8.4 m), which spanned from $38\frac{3}{8}$ in. (975 mm) downstream from the centerline of post no. 12 through 5 in. (127 mm) upstream from the centerline of post no. 12 through 5 us 20 degrees.

The bottom corrugation of the rail was flattened, starting 25 in. (635 mm) upstream from the centerline of post no. 14 and extending downstream 54 in. (1,372 mm). The post bolt holes in the rail tore at post nos. 12 through 16. A 2-in. (51-mm) long kink was found on the top edge of the rail at the centerline of post no. 12. Vertical kinks, 3 in. (76 mm) and 1 in. (25 mm) long, were located 1 in. (25 mm) downstream from the centerline of post no. 12 on the middle corrugation and at the bottom edge of the rail, respectively. Contact marks on the guardrail began at the centerline of the impact target and extended continuously downstream to 5 in. (127 mm) upstream from the centerline of post no. 17. A 3-in. (76-mm) long kink was found 8 in. (203 mm) upstream from the centerline of post no. 13. Additional kinking with lengths of 2 in. (51 mm), 3 in. (76 mm), and 6 in. (152 mm) was located at 5 in. (127 mm), 26 in. (660 mm), and 34 in. (864 mm) downstream from the centerline of post no. 13, respectively. A 14-in. (356-mm) long kink was located 7 in. (178 mm) downstream from the centerline of post no. 14 on the top edge of the rail. An 8-in. (203-mm) long kink was found on the bottom edge of the rail at the centerline of post no. 15. A 5-in. (127-mm) long kink was located 3 in. (76 mm) downstream of post no. 16. A 10-in. (254-mm) long bend occurred on the top corrugation at the centerline of post no. 17. A 2-in. (51mm) long kink was found on the bottom edge of the rail 10 in. (254 mm) downstream from the centerline of post no. 17. The rail at the centerline of post no. 18 had a ¹/₂-in. (13-mm) long kink on the top edge.

Post nos. 13 through 17 buckled at the groundline. Post nos. 9 and 17 through 27 twisted counterclockwise. Post nos. 14 and 15 had full blockout disengagement, and post no. 13 had the bottom half of the blockout disengaged. At the groundline, post no. 13 had a $1\frac{1}{2}$ -in. (38-mm) horizontal tear on its front upstream flange and a $\frac{1}{2}$ -in. (13-mm) horizontal tear on the downstream edge of the front flange. Contact marks were found on post no. 13 starting 3 in. (76 mm) above the groundline on the front flange and extended vertically 18 in. (457 mm). The post bolt for post no. 13 was bent. Contact marks were found on post no. 14 on the edge of the upstream flanges extending vertically the height of the post and on the front face of the upstream flange starting 3 in. (76 mm) above the groundline and extending 16 in. (406 mm) upward. The front upstream flanges of post no. 15 just above the groundline. Two $1\frac{1}{2}$ -in. (38-mm) tears were located 1 in. (25 mm) above the groundline on the upstream flanges of post no. 15 just above the groundline. Two $1\frac{1}{2}$ -in. (38-mm) tears were found on post no. 16. Contact marks were found on post no. 17 beginning 9 in. (229 mm) above the groundline and extending 7 in. (178 mm) upward.

Post no. 1 had a 5¹/₂-in. (140-mm) soil gap on the upstream side and a 37-in. (940-mm) diameter by 4¹/₂-in. (114-mm) tall soil heave on the downstream side. Post no. 2 had a soil gap of 4¹/₂ in. (114 mm) on the upstream side and a 29-in. (737-mm) diameter by 5-in. (127-mm) tall soil

heave on the downstream side. Post nos. 13, 14, 15, and 17 also had minor gaps in the asphalt. For the downstream BCT wood posts and foundation tubes, no longitudinal movement or damage was observed, as documented in Figure 45. More specifically, the wood posts were not cracked or split at the post bolt locations, as depicted in Figure 46.

The maximum lateral permanent set of the rail and post deflection were $17\frac{5}{8}$ in. (448 mm) at the rail at post no. 14 and $12\frac{1}{4}$ in. (311 mm) at post no. 13, respectively, as measured in the field. The maximum lateral dynamic rail and post deflection were 28 in. (712 mm) at post no. 14 and 22.3 in. (566 mm) at post no. 13, respectively, as determined from high-speed digital video analysis. The working width of the system was found to be 59.3 in. (1,507 mm), also determined from high-speed digital video analysis.

5.5 Vehicle Damage

The damage to the vehicle was extensive, as shown in Figures 47 through 50. The maximum occupant compartment deformations are listed in Table 5 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. The MASH 2016-established deformation limit for the roof was violated with a maximum deformation of $5\frac{1}{8}$ in. (130 mm). Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix F.

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH 2016 ALLOWABLE DEFORMATION in. (mm)	
Wheel Well & Toe Pan	15/8 (41)	≤ 9 (229)	
Floor Pan & Transmission Tunnel	³ / ₈ (10)	≤ 12 (305)	
A-Pillar	7⁄8 (22)	≤ 5 (127)	
A-Pillar (Lateral)	³ ⁄ ₄ (19)	≤3 (76)	
B-Pillar	¹ ⁄4 (6)	≤ 5 (127)	
B-Pillar (Lateral)	¹ ⁄4 (6)	≤3 (76)	
Side Front Panel (in Front of A-Pillar)	7⁄8 (22)	≤ 12 (305)	
Side Door (Above Seat)	¹ ⁄4 (6)	≤ 9 (229)	
Side Door (Below Seat)	¹ / ₄ (6)	≤ 12 (305)	
Roof	5½ (130)	≤ 4 (102)	
Windshield	71/8 (181)	<i>≤</i> 3 (76)	

Table 5. Maximum Occupant Compartment Deformations by Location

The majority of the damage was concentrated on the right-front corner and the front side of the vehicle. The radiator was crushed and bent inward approximately 6 in. (152 mm). The front bumper, right and left headlights, and right hood attachment disengaged from the vehicle. The roof was crushed, while the windshield was deformed and shattered, as shown in Figures 48 and 49.

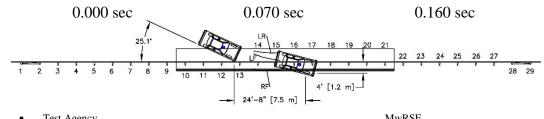
Further windshield crush details are provided in Appendix F. The hood was dented and buckled in numerous locations, as shown in Figure 48. The entire right side had contact and scrape marks and dents. The right-side mirror had contact marks and broke, but remained attached. Contact and scrape marks, denting, and buckling were found along the right-side fender. A ¹/₄-in. (6-mm) gap was found at the bottom between the right fender and right-front door. A ¹/₄-in. (6-mm) overlap occurred near the center between the right-front door and the right fender. A ¹/₂-in. (13-mm) long gap was found between the right-front door and the roof and a ⁵/₈-in. (16-mm) gap was found at the top of the right-front and right-rear doors. The right-side A-pillar was crushed at the front. The right-front tire rim was bent inward approximately 3 in. (76 mm). A ¹/₄-in. (6-mm) gap was found between the left fender and the A-pillar of the vehicle. The left forward frame element of the vehicle was bent inward 6 in. (152 mm). A 1-in. (25-mm) long tear was found in the right-rear floor pan, and a tear was found in the oil pan, as depicted in Figures 49 and 50. The peak SAE CFC60 longitudinal acceleration was found to be approximately -35.87 g's and -21.09 g's for SLICE-1 and SLICE-2, respectively, as shown in Figure 51.

5.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 6. The longitudinal ORA exceeded the suggested limits provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 6. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 30. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G.

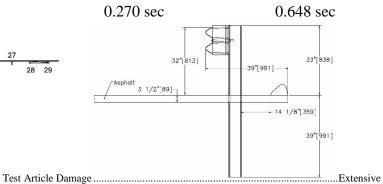
Evaluation Criteria		Trans	MASH 2016	
		SLICE-1	SLICE-2 (primary)	Limits
ΟΙΥ	Longitudinal	-27.02 (-8.23)	-26.19 (-7.98)	±40 (12.2)
ft/s (m/s)	Lateral	-12.70 (-3.87)	-13.28 (-4.05)	±40 (12.2)
ORA	Longitudinal	-22.60	-21.80	±20.49
g's	Lateral	8.89	-7.88	±20.49
MAX.	Roll	-8.46°	-9.66°	±75
ANGULAR DISPL. deg.	Pitch	-5.90°	-6.15°	±75
	Yaw	-11.31°	-12.59°	not required
THIV ft/s (m/s)		27.79 (8.47)	27.53 (8.39)	not required
PHD g's		23.27	22.52	not required
ASI		1.04	0.98	not required

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. GAA-1


5.7 Load Cells

The pertinent data from the load cells was extracted from the bulk signal and analyzed using the transducer's calibration factor. After analysis, it was observed that the upstream and downstream loads were inconsistent and could not be correlated with the observed end anchor deflections. Therefore, the load cell data was deemed to be erroneous and was not used.

5.8 Discussion

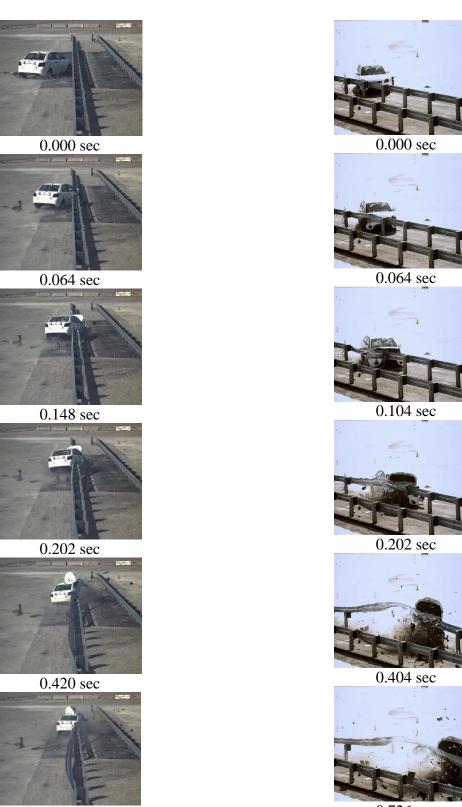

The analysis of the test results for test no. GAA-1 showed that the barrier system adequately contained the 1100C vehicle with controlled lateral displacements of the barrier. There were no detached elements or fragments that presented undue hazard to other traffic, however, deformations of, or intrusions into, the occupant compartment that could have caused serious injury did occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable, because they did not adversely influence occupant risk safety criteria nor cause rollover. The maximum longitudinal ORA value of -21.80 g's recorded by SLICE-2 (the primary data recorder) exceeded the MASH 2016 limit of 20.49 g's. Therefore, test no. GAA-1 was determined to be unacceptable according to the TL-3 MASH 2016 safety performance criteria provided for test designation no. 3-10.

Test Agency	MwRS
Test Number	
Date	
MASH Test Designation	
Test ArticleMGS wit	th Asphalt Mow Strip and Cur
Total Length	
Key Component – W-Beam Guardrail	× •
Thickness	
Top Mounting Height	
Key Component – Steel Post (Driven)	
Shape	
Length	
Embedment Depth	
Spacing	
Soil Type	ip on coarse, crushed limestor
Vehicle Make /Model	
Curb	2,326 lb (1,055 k)
Test Inertial	2,392 lb (1,085 kg
Gross Static	2,552 lb (1,158 k)
Impact Conditions	
Speed	1 、
Angle	
Impact Location104.3 in. (2,649 mm) upstream	1
Impact Severity (IS) 56.8 kip-ft (77 kJ) > 51 kip-ft (6	59.1 kJ) limit from MASH 201
Exit Conditions	
Speed	
Angle	
Exit Box Criterion	· ·
Vehicle Stability	
Vehicle Stopping Distance	,
Vehicle Damage	
VDS [10]	
CDC [11]	
Maximum Interior Deformation	

42

Mariana Tart Article Deflections

Maximum Test Article Deflections	
Permanent Set	
	Permanent Set Dynamic


Transducer Data

Evaluation Criteria		Trans	MASH	
		SLICE-1	SLICE-2 (Primary)	Limit
OIV ft/s	Longitudinal	-27.02 (-8.23)	-26.19 (-7.98)	±40 (12.2)
(m/s)	Lateral	-12.70 (-3.87)	-13.28 (-4.05)	±40 (12.2)
ORA	Longitudinal	-22.60	-21.80	±20.49
g's	Lateral	8.89	-7.88	±20.49
MAX	Roll	-8.46°	-9.66°	±75
ANGULAR DISP.	Pitch	-5.90°	-6.15°	±75
deg.	Yaw	-11.31°	-12.59°	not required
THIV – ft/s (m/s)		27.79 (8.47)	27.53 (8.39)	not required
PHD – g's		23.27	22.52	not required
ASI		1.04	0.98	not required

Figure 30. Summary of Test Results and Sequential Photographs, Test No. GAA-1

Figure 31. Additional Sequential Photographs, Test No. GAA-1

1.120 sec

0.726 sec

Figure 32. Additional Sequential Photographs, Test No. GAA-1

December 14, 2017 MwRSF Report No. TRP-03-377-17

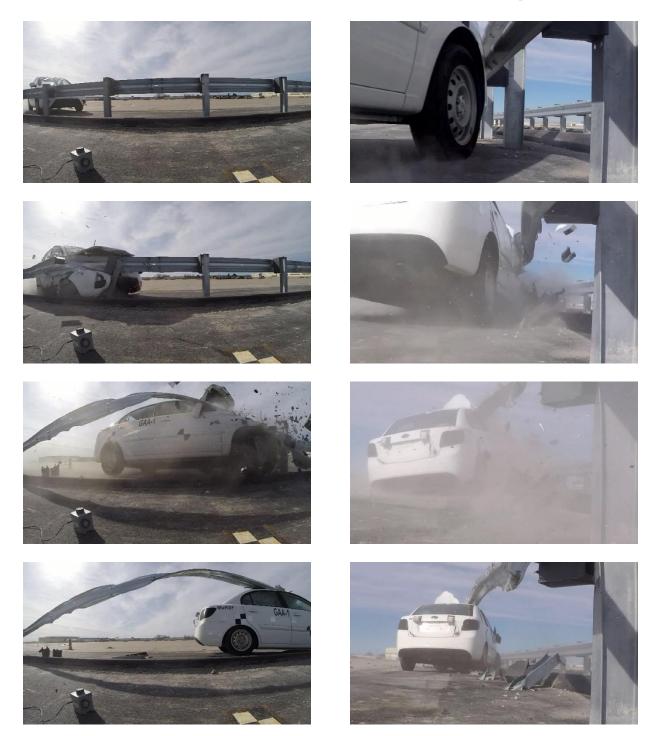
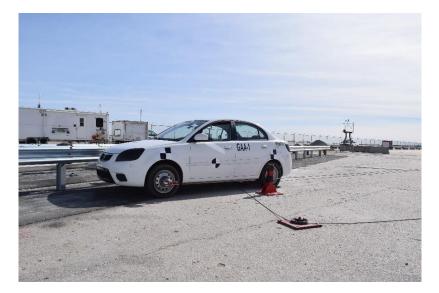



Figure 33. Documentary Photographs, Test No. GAA-1

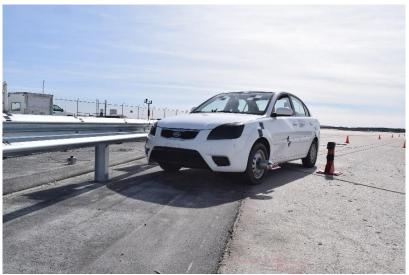


Figure 34. Impact Location, Test No. GAA-1

Figure 35. Vehicle Final Position and Trajectory Marks, Test No. GAA-1

48

Figure 37. System Damage, Test No. GAA-1

Figure 38. System Damage - Post Nos. 4 through 15, Test No. GAA-1

Figure 39. System Damage - Post Nos. 16 through 27, Test No. GAA-1

Figure 40. Post No. 12 Damage, Test No. GAA-1

Figure 41. Post No. 13 Damage, Test No. GAA-1

Figure 42. Post No. 14 Damage, Test No. GAA-1

Figure 43. Damage to Post Nos. (a) 15 and (b) 16, Test No. GAA-1

Figure 45. Downstream End Anchorage Movement, Test No. GAA-1

Figure 46. Post Nos. 28 and 29, Downstream End Anchorage, Test No. GAA-1



Figure 47. Vehicle Damage, Test No. GAA-1

Figure 48. Vehicle Damage, Test No. GAA-1

Figure 49. Occupant Compartment Deformation, Test No. GAA-1

Figure 50. Vehicle Undercarriage Damage, Test No. GAA-1

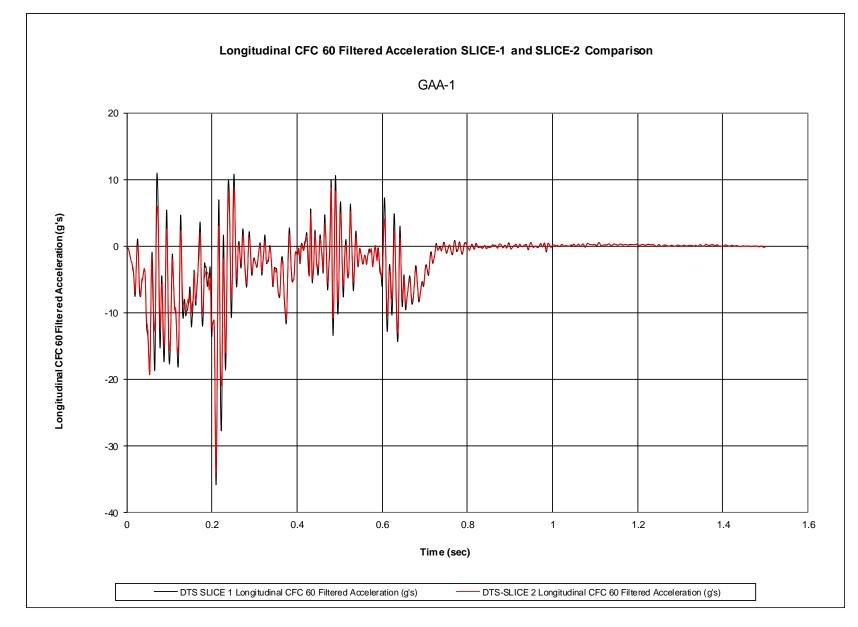


Figure 51. SAE CFC60 Longitudinal Acceleration (SLICE-1 and SLICE-2), Test No. GAA-1

6 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

An MGS was installed in an asphalt mow strip with an asphalt curb placed behind it, as shown in Figures 2 and 20. The barrier system was crash tested and evaluated according to MASH 2016. One full-scale crash test was performed according to the TL-3 safety performance criteria, specifically test designation no. 3-10. Test no. GAA-1 consisted of a 2,392-lb (1,085-kg) small car impacting the MGS at a speed of 62.8 mph (101.1 km/h) and at an angle of 25.1 degrees for an impact severity of 56.8 kip-ft (77 kJ). The vehicle was brought to a stop while in contact with the system. A 1-in. (25-mm) tear was found in the left-rear floor pan. The occupant compartment deformation for the roof was 5½ in. (130 mm), which exceeded the MASH 2016 limit of 4 in. (102 mm), and the windshield was crushed in 7½ in. (181 mm), which exceeded the MASH 2016 limit of 3 in. (76 mm). The maximum longitudinal ORA value of -21.80 g's recorded by SLICE-2 (the primary data recorder) exceeded the MASH 2016 limit of 20.49 g's. Note, the secondary data recorder value also exceeded the maximum longitudinal ORA value. Thus, the MGS that was installed in an asphalt mow strip with a curb placed behind it was unacceptable according to the safety performance criteria presented in MASH 2016. A summary of the safety performance evaluation is provided in Table 7.

Evaluation Factors		Evaluation Criteria								
Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.								
	D.	Detached elements, fragments or not penetrate or show pote compartment, or present an unde personnel in a work zone. De occupant compartment should ne and Appendix E of MASH 2016	ential for penetrating to be hazard to other traffic, performations of, or intrusion of exceed limits set forth in	he occupant bedestrians, or ons into, the	U					
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.								
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:								
Risk		Occupant In	ppact Velocity Limits		S					
		Component	Preferred	Maximum						
		Longitudinal and Lateral	dinal and Lateral 30 ft/s (9.1 m/s) 40 ft/s (12.2 m/s)							
	I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:									
		Occupant Rided	own Acceleration Limits		U					
		Component	Preferred	Maximum						
	Longitudinal and Lateral15.0 g's20.49 g's									
		MASH 2016 Test Desi	gnation No.		3-10					
Final Evaluation (Pass or Fail)										
5 – Satisfact	ory	U – Unsatisfactory	NA - Not Applicabl	e						

Table 7. Summary of Safety Performance Evaluation Results

7 REFERENCES

- 1. *Manual for Assessing Safety Hardware (MASH), Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.*
- Lechtenberg, K.A., Bielenberg, R.W., Albuquerque, F.B., and Faller, R.K., *Performance Analysis of the Mondo Polymer Blockout for Use in MGS Installations*, Report No. TRP-03-289-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, May 23, 2013.
- Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., Downstream Anchoring Requirements for the Midwest Guardrail System, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.
- 4. Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., *Dynamic Evaluation and Implementation Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal*, Paper No. 13-5277, Transportation Research Record No. 2377, Journal of the Transportation Research Board, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2013, pages 61-73.
- 5. Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., *Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination*, Paper No. IJCR 886R1, Manuscript ID 1009308, International Journal of Crashworthiness, Taylor & Francis, Vol. 20, Issue 3, Published online February 23, 2015, pages 301-315.
- 6. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSST/B-256 for: Trailing-End Anchorage for 31" Tall Guardrail*, December 18, 2015.
- 7. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 8. MacInnis, D., Cliff, W., and Ising, K., *A Comparison of the Moment of Inerita Estimation Techniques for Vehicle Dynamics Simulation*, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 9. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 10. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 11. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

8 APPENDICES

Appendix A. Georgia DOT Standard Details - 2002 Revision

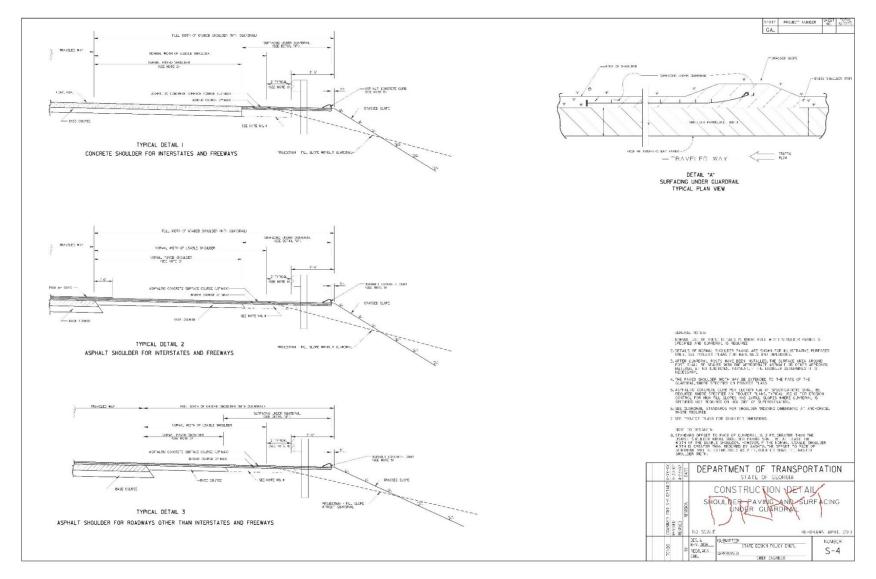


Figure A-1. Georgia DOT Construction Detail S-4

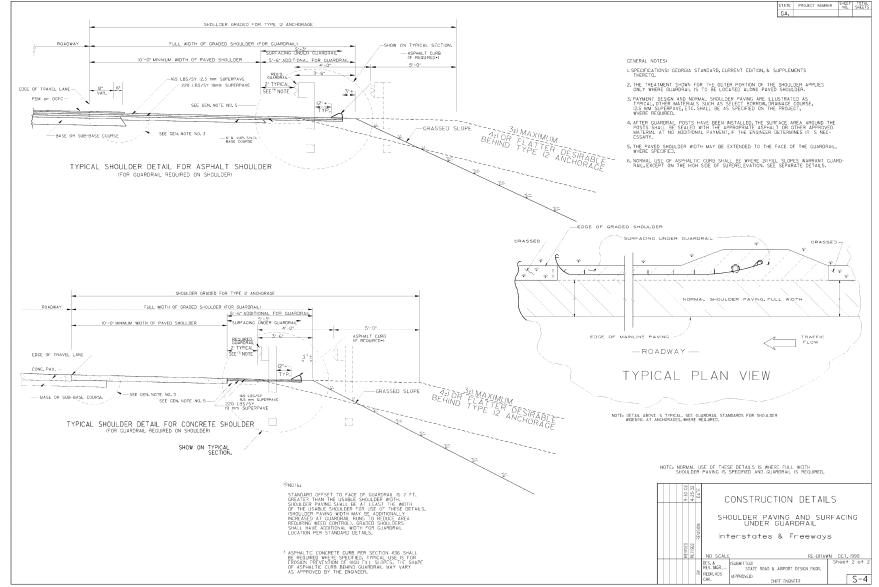


Figure A-2. Georgia DOT Construction Detail S-4

70

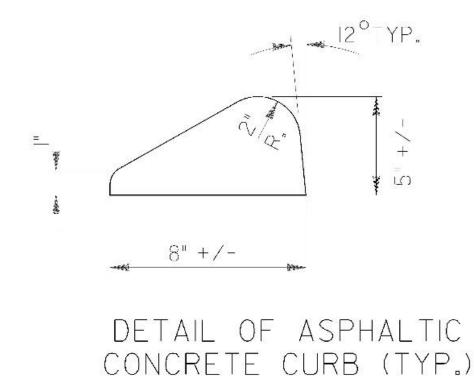


Figure A-3. Georgia DOT Asphalt Curb Detail

Appendix B. Asphalt Core Test Results

February 22, 2017

Compressive Strength of Asphalt Cores Taken from MASH Test Site

Overview:

A series of compression tests were performed on cylindrical asphalt specimens cored from the site prepared for full-scale Manual of Assessing Safety Hardware (MASH) crash tests. The crash test site is located at the Midwest Roadside Safety Facility (MwRSF) in Lincoln, NE. Based on the heights of the cores taken from the test site, the asphalt strip at the site ranges from 3.75 to at least 4.25 inches in thickness.

The compression tests on the cores were performed at the Structural Engineering Mechanics and Materials (SEMM) Laboratory on the Georgia Tech campus. All test protocols are based on ASTM D1074 – 09: "Standard Test Method for Compressive Strength of Bituminous Mixtures." The recommended specimen size is 4 by 4 in. (nominal height and diameter) and loading rate is 0.2 in./min. This loading rate is slow enough to observe the failure shape and the propagation of cracks in specimens.

For reference, also presented are representative test results from cores taken at Georgia Tech during the Phase 1 (static) and Phase 2 (dynamic) subcomponent experimental investigations.

MwRSF specimen test:

Three specimens cored from asphalt mow strip at MwRSF test site were tested on 2/21/2017. To determine a representative strength, each specimen was taken from different location: (1) near the impact point of crash vehicle, (2) upstream section, and (3) downstream section. Table 1 includes compression test results and other test information including specimen dimension, test condition, and photographs taken during the test. All specimens showed a similar failure mode represented by lateral expansion and vertical cracks. The average compressive strength from the 3 cores was approximately 400 psi.

Specimen	N-01	N-02	N-03
Core location	Near the impact point	Upstream section	Downstream section
Test picture (setup)	Na lupert	Power and second	Bownstreer
Test picture (failure)	NI Impert	N2 Upstream	RS Downstream
Actual diameter	3.70 in.	3.70 in.	3.70 in.
Thickness (Height)	4.25 in.	3.75 in.	3.80 in.
Test temperature	70 °F	71 °F	67 °F
Age of specimen		(curing time from asphalt pla	
Compressive	371.0 psi	396.5 psi	430.6 psi
strength	Avera	ge compressive strength $= 399$	9.4 psi

Table 1. MwRSF Specimen Test Sheet

Georgia Tech core tests (reference):

In the Phase 1 GDOT research project involving static tests of guardrail posts driven through an asphalt layer, a total of 35 compression tests were performed to investigate the effect of aging/curing on asphalt strength (from 11/12/2014 to 4/17/2015). Figure 1 shows the trend of asphalt strength gain over time.

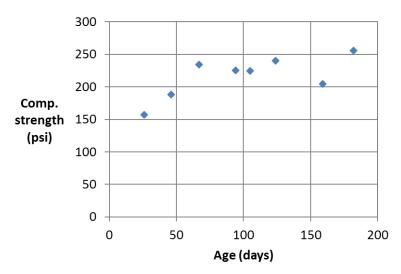


Figure 1. Average Compressive Strength Versus Age (specimens from Georgia Tech static test site)

In the Phase 2 GDOT research project focusing on dynamic testing of guardrail posts driven through an asphalt layer, a modified asphalt mix design was used for a fast-track repetition of dynamic test and asphalt mow strip placement in given project duration. By using a specific type of mix, the reference compressive strength was achieved in approximately 2 weeks from the asphalt placement.

Table 2 shows a summary of all specimen test information performed at Georgia Tech. Vertical cracks and horizontal expansion was similarly observed in most of the tested specimens. The average compressive strength values were approximately 240 psi.

	- asis - store and - speciment -	• •
Туре	Reference asphalt mix in Georgia	Modified asphalt mix
Description of	Hot mix asphalt, PG 76-22 binder,	Portland cement added (10% by weight)
mix	19 mm max. aggregate	Cold mix asphalt, 9 mm max. aggregate
Test picture (failure)		
No. of tested specimen	9	10
Test temperature	68 °F	66 ~ 71 °F (average: 68.2)
Age of specimen	124 days	11 ~ 14 days (average: 12.9)
Average compressive strength	240.5 psi (60.2% of MwRSF)	239.3 psi (59.9% of MwRSF)

Table 2.	Georgia	Tech	Specimen	Test	Summary Sheet
----------	---------	------	----------	------	---------------

Prepared by:

David W. ScottPrincipal InvestigatorSeo-Hun LeeGraduate Research AssistantSchool of Civil and Environmental EngineeringGeorgia Institute of Technology

Appendix C. Material Specifications

Item No.	Description	Material Specification	References
-	Asphalt	GA 12.5 mm Superpave	Project No. NH-STP-92-6(121), Design No. 2016-2
-	Curb	GA 4.75 mm or 9.5 mm Superpave Level A Mixture	Project No. NH-STP-92-6(121), Design No. 2016-2
a1	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	H#9411949
a2	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS End Section	AASHTO M180	H#9411949
a3	6'-3" [1,905] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	R#12-0368 RedPaint WB2
a4	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1,829] Long Steel Post	ASTM A992	Post#3-9,13,14,16-27 H#55044258; Post#10-12 H#2413988; Post#15 H#55028671
a5	5 1/8"x8"x14" [130x203x356] Composite Recycled Blockout	Mondo Polymer MGS14SH or Equivalent	L#160428/1000
b1	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots +/- 18" [457] from ground on tension face)	Post#1-2 Ch#22215, Post#28-29 Ch#22927
b2	72" [1829] Long Foundation Tube	ASTM A500 Gr. B	H#0173175
b3	Ground Strut Assembly	ASTM A36	R#090453-8, BOL#43073
b4	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#E86298
b5	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	H#6106195
b6	Anchor Bracket Assembly	ASTM A36	H#4153095
b7	BCT Cable Anchor Assembly	-	North: H#DL15103032, South: SO#1210536, BOL#79448
d1	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#150424L Nuts: H#10446960
d2	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#150424L Nuts: H#10446960
d3	5/8" [16] Dia. UNC, 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#20337380 Nuts: H#10446960
d4	5/8" [16] Dia. UNC, 10" [254] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#DL15107048 Nuts: R#16-0217 P#36713 C#210101526
d5	5/8" [16] Dia. UNC, 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#7366484, 7367052, 7368369 Nuts: R#16-0217 P#36713 C#210101526
d6	7/8" [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#2038622 Nuts: H#NF12101054
e1	5/8" [16] Dia. Plain Round Washer	ASTM F844	n/a
e2	7/8" [22] Dia. Plain Round Washer	ASTM F844	n/a

Table C-1. Bill of Materials, Test No. GAA-1

78

December 14, 2017 MwRSF Report No. TRP-03-377-17

Georgia Asphalt Mix

Type of Asphalt Concrete: SPR

Project Manager: JESSE DE LOS SANTOS

2016-2

NH-STP-92-6(121)

N-92, MEAD - YUTAN

SMT

Project No: Name of Road:

Design No:

State of Nebraska

#2-12982-SPR-16-MD

Department of Roads Asphalt Concrete Design

Date: 06-17-16 Approved

ASPHALT BINDER

Source: FLINT HILLS

Grade: PG 64-32 was used

			8								per spec			
GRADATION OF M	ATERIAL	S PROPOS	ED			SIEVE ANALYSIS (WASH)								
MATERIAL	Г		CATION		10	19.0	12.5	9.50	4.75	2.36	1.18	600	300	75
	%	1/4	SEC	Т	R	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#200
RC-1 LIMESTONE	10		100.0	53.6	22.1	5.5	3.5	3.0	2.7	2.5	1.5			
MAN SAND	27	MA	100.0	100.0	100.0	92.6	49.8	26.0	12.0	6.6	4.6			
47B GRAVEL	10	NE 23 16N 1E		100.0	99.6	98.2	91.6	72.3	50.9	30.0	10.6	0.6		
SCREENINGS	8		KERFC	RD		100.0	100.0	100.0	94.4	62.0	51.6	40.7	30.5	16.0
RAP	45		ON PRO	JECT		97.6	94.2	91.3	77.5	58.6	37.5	23.6	16.9	8.0
		COMB	INED G	RADAT	ION	98.9	92.7	88.1	77.1	52.4	33.4	20.4	13.1	6.3
								81		46			12	4
		SPECI	SPECIFICATION RANGE					89		56			21	9

JOB MIX IDENTIFICATION									
JMF #	110	\vdash							
TOTAL	BINDER	5.10%							

CONSENSUS PRO	FAA SP.GR.	
FAA Results	44.3	2.585
CAA Results	97	
Sand Equivalent	78	
F & E Particles	2	br
Dust to Asph. Ratio	1.12	
Design Gsb	2.585	0

Addition of 2.31% of type PG 64-34 asphalt binder for a total of 5.10% (by wt.of mix) has been selected by the contractor to be the target asphalt binder content.

*Note: 1.25% Hydrated Lime, by weight of virgin aggregate, will added during construction of this design.

This constitutes verification of the job-mix gradation and superpave criteria values proposed by the contractor. If it is necessary to change the job mix either before or after the job starts, including the asphalt binder %, the contractor shall notify the P.E. / P.M.

cc: Constructor's Inc.	REMARKS:	This new mix design is due to gradation changes in the RAP material and
Ron Vajgrt		will start with Lot 1-3. Please use a +0.3% correction for the asphalt
Andy Dearmont		binder content during construction. RR/jp
Robert Rea		
Matt Beran	Validated by	Robert C. Rea & Materials and Research Division
File	Fax (402) 479	9-3882

Figure C-1. Asphalt Mix, Test No. GAA-1

Gregory Industries 13:54:11 Jun 24 2015 Page 1 HEAT MASTER LISTING Heat No. Mill# Name YR Primary Grade Secondary Grade CODE Original Heat Number 9411949 ARC03 ARCELOR MITTAL USA, LLC 15 1021 8534 ****** Chemistry ****** Cr Si P C Mn S Cu Ni Mo Sn Al V Cb N Ti 0.0400 0.0100 0.0100 0.2100 0.7500 0.0000 0.0200 0.0100 0.0100 0.0020 0.0580 0.0020 0.0020 0.0042 0.0020 Ca 0.0003 ****** Mechanical Test ******
 YIELD
 TENSILE
 ELONGATION
 ROCKWELL

 56527
 75774
 27.15
 78
 Guardrail W-Beam 20ct/25' 100ct/12' 10ct/25ft w/MGS Anchor Panel July 2015 SMT

Figure C-2. W-beam Guardrail at Post Nos. 1 through 26, 28, and 29, Test No. GAA-1

							CO VIIGI	N OID						Trini			F		
Trinity Highway Products , LLC 550 East Robb Ave.						Order Number: 1164746													
.ima, OH	45801					Cust	omer PO: 2563							F. F. (1	(110				
Customer	· MIDV	VEST MACH.& SU	UPPLY CO.			BOL	Number: 69500						As	s of: 5/1	6/12				
ouotonioi.		BOX 703	orabi oo.				cument #: 1												
	r. u	BUX 703																	
						Sh	ipped To: NE												
	MILF	ORD, NE 68405				U	Jse State: KS												
Project:	RESA	LE																	
																	-		
			_								-	100							
Qty 50	Part #	Description 12/6'3/S	Spec M-180	CL	TY 2	Heat Code/ Heat # 515691	Yield 64,000	TS 72,300	Elg C 27.0 0.060 (Mn 0.740 0	P S	Si 0.010	Cu 0.021	Cb 0.04 0.1	Cr	Vn /	4		
50	00	12/0 3/3	M-180	A	2	4111321	63,100	80,200	29.0 0.210		0.009 0.008			0.000 0					
			M-180	A	2	515659	67,000	75,200	26.0 0.064		0.012 0.008			0.000 0					
			M-180	A	2	515660	66,800	74,300	27.0 0.064		0.012 0.006			0.000 0					
			. M-180	A	2	515662	63,900	72,900	28.0 0.064	0.770	0.010 0.006	0.009	0.016	0.000 0	0.025 (0.000	4		
			M-180	A	2	515663	64,900	76,500	21.0 0.064	0.740	0.009 0.007	0.007	0.023	0.000 0).026 (0.000	4		
			M-180	A	2	515668	66,700	75,500	27.0 0.063	0.770	0.014 0.007	0.010	0.024	0.000 0).030 (0.000	4		
			M-180	A	2	515668	70,200	80,800	21.0 0.063	0.770	0.014 0.007	0.010	0.024	0.000 0).030 (0.000	4		
			M-180	A	2	515669	64,500	74,100	26.0 0.063	0.790	0.014 0.007	0.009	0.017	0.000 0).028	0.000	4		
			M-180	A	2	515687	63,400	74,100	30.0 0.068	0.750	0.012 0.010	0.008	0.025	0.000 0	0.060	0.000	4		
			M-180	A		515687	65,100	74,400	28.0 0.068		0.012 0.010			0.000 0					
		e.	M-180	A		515690	63,000	71,800	27.0 0.059		0.010 0.008			0.000 0					
			M-180 M-180	A A		515696 515696	62,900 63,900	72,500	28.0 0.058		0.013 0.008			0.000 0					
			M-180 M-180	A		515700	67,800	73,400 77,700	29.0 0.058 28.0 0.065		0.013 0.008			0.000 C					
			M-180 M-180	A		616068	62,900	71,600			0.013 0.009			0.000 0					
			M-180	A		616068	66,700	74,200	30.0 0.061		0.013 0.010			0.000 0					
			M-180	A		616071	64,000	74,000	28.0 0.061		0.016 0.007			0.000 0					
			M-180	Α	2	616072	63,800	74,200	29.0 0.066	0.750	0.014 0.009	0.010	0.026	0.000 (0.039	0.000	4		
			M-180	A	2	616073	63,900	73,300	27.0 0.064	0.760	0.016 0.009	0.012	0.024	0.000 (0.041	0.000	4		
					3														

65,000

63,100

63,600

64,800

67,000

64,900

74,500

80,200

73,600

74,300

75,200

76,500

Certified \nalvsis

1 of 4

28.0 0.064 0.760 0.016 0.009 0.012 0.024 0.000 0.041 0.000 4

29.0 0.210 0.710 0.009 0.007 0.010 0.030 0.00 0.030 0.000 4

27.0 0.066 0.720 0.012 0.006 0.011 0.021 0.000 0.026 0.000 4

26.0 0.069 0.740 0.010 0.006 0.011 0.022 0.000 0.021 0.000 4

26.0 0.064 0.790 0.012 0.008 0.008 0.022 0.000 0.025 0.000 4

21.0 0.064 0.740 0.009 0.007 0.007 0.023 0.000 0.026 0.000 4

Figure C-3. W-Beam Guardrail at Post No. 27, Test No. GAA-1

30 60G

12/25/6'3/S

M-180

M-180

M-180

M-180

M-180

M-180

A 2

A 2

A 2

A 2

A 2

A

616073

515656

515658

515659

515663

2 4111321

				141		CERTIFI	IED MATE	RIAL TEST REPOR	RT .						Page 1/1
IS-ML-CARTERSVILLE S40 CD GRASSDALE ROAD NE ATTERSVILLE, GA 30121 MARONOM 43322-1701 ULSATONBURYLCT 06033-038 LENOTIM WEGHT HIST IBATCH 42007 SATERSVILLE, GA 30121 SALES ORDER 339948400000 CUSTOMER MATERIAL N° SPECIFICATION / DATE or REVISION ATTM A-14 ATTM	GÐ	GER	DAU	HIGHWAY S.	AFETY CORP							Wide	Flange Beam / 6 X	8.5# / 150	DOCUMENT 1 0000000000
ARTERSVILLE, GA 30121 SALES ORDER, MODIO SPECIFICATION / DATE or REVISION SA USTOMER PURCHASE ORDER NUMBER BILL OF LADING ASTM A709-13. AS14 USTOMER PURCHASE ORDER NUMBER BILL OF LADING DATE CASTM A709-13. AS14 01677045 IB-B0500800 DATE 03/30/2016 ASTM A709-13. AS14 CHEMICUL COMPOSITION R. S. S. DATE CASTM A709-13. AS14 01677045 IB-B0500800 0.010 0.028 0.18 0.29 0.10 0.06 0.031 0.016 0.000 WECHANGLE, PROPERTIES VIC VIC VIC VIC S.000 20.50 20.50 SOLOO 355 451 8.000 20.50 23.40 COMBENTS / NOTES VIC VIC <td< td=""><td>S-ML-CART</td><td>TERSVILLE</td><td></td><td>MARION, OH</td><td></td><td></td><td></td><td>Y,CT 06033-0358</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></td<>	S-ML-CART	TERSVILLE		MARION, OH				Y,CT 06033-0358			1				
Del dover figures are certified demical and physical test records as contained in the permanent records of company. We certify that these data are correct and in compliance with: appeting requirements. This manning, including the biller, was meleted and mannifestured in the USA. CMTR complex with EN 1020-31.	ARTERSVIL		DIL			C	CUSTOMER	R MATERIAL Nº		ASTM A	5-14	TE or REVISI	ON		
Mathematical processing of the proc															
Y 58/2% Y 50 Y 50 <thy 50<="" th=""> Y 50 <thy 50<="" th=""> Y 50 <thy 50<="" th=""></thy></thy></thy>	ç	Mn	P 0.010	\$ 0.028	Şi % 0.18	Çμ 0.29	Ni 0.10	Çr % 0.06	M 0.0	io 0 31	Şn % 0.016	% 0.016	Nb %0	d at	
51600 69800 356 481 8.000 23.40 COMMENTS / NOTES	YS F 52	0.2% PSI 2000	U P 712	FS SI 200	ү М 3:	S Pa 59		UTS MPa 491		8.000	,	20	0.50		
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.)MMENTS / N	OTES				5 1000000									
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.															
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.															
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.															
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.															
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.															
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.															
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.										** = 111					
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.															
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.															
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.															
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.															
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.															
Mack on Bhaskar Valamanchill manufor Van Wang															
QUALITY ASSURANCE MGR.												correct and i	n compliance with		
		specified	d requirements. T	his material, incl	uding the billets,	was melted and							-		

Figure C-4. W6x8.5 Posts, Post Nos. 3 through 9, 13 through 14, and 16 through 27, Test No. GAA-1

NUCOR SIEEL BERKELEY D.D. Box 2259 Mt. Pleasant, S.C. 29464 Phone: (843) 336-6000	All beams prod	12/22/14 18:46:36 ED AND MANUFACTURED IN THE USA uced by Nucor-Berkeley are cast and 11y killed and fine grain practice. ect manufacturing of this material,
Sold Io: HIGHWAY SAFETY CORP PO BOX 358	Ship Io: HIGEWAY SAFETY CORP 473 WEST FAIRGROUND STREET	Customer #.: 352 _ 3 Customer PD: 1627044 8.0.1. #: 1110076
GLASIONBURY, CI D6033	MARION, DE 43301	MOS: I

SPECIFICATIONS; Tested in accordance with ASIM specification A6/A6M-14 and A370, Quality Manual Rev #27, ASIM : A572 5013a:A529-14-50 IB-<mark>B0600800</mark>

==================	=======================================		=======		=====	==========		==========				===========	
Description	Heat# Grade(s) Test/Heat JW	Yield/ Tensile Ratio	Yield (PSI) (MPa)	Tensile (PSI) (MPa)	Elong %	C Cr XXXXXX	Mn Mo Ti	P Sn XXXXXX	S B XXXXXX	si V N	Cu Nb XXXXXX	Ni ***** CI	CE1 CE2 Pcm
W6X8.5 D42'00.00* W150X12.6 D12.8016m	2413985 A572 5013a A992-11 ANS	.83	57200 394 56400 389	69300 478 69100 476	25,54 26,69 90 p	,07 .06 c(s) 32,	.84 .01 .001 130 1bs	013	.039 .0005	,21 ,005 ,0051	,20 ,015	,05 4.59 Inv#:	.25 .2835 .1404 0
W6X8,3 042′00,00* W150X12,6 012.6016m	2 <mark>413988</mark> A572 5013a A992-11 ANS	.83 ,82	58300 402 57200 394	70600 487 69600 481	25.70 28,55 36 P	.07 .06 c(s) 12,	.86 .01 .001 632 lbs	,014 ,0091	.034 .0005	,17 ,004 ,0051	,23 ,015	.05 4.87 Inv#:	.25 .2773 .1356 0

2 Heat(s) for this MIR.

R#15-0515 H#2413988

W6x8.5x6'

April 2015 SMT

Elongation based on 8' (20.32cm) gauge length. 'No Weld Repair' was peformed. CI = 26.D1Cut3.88Ni+1.20Cr+1.49Si+17.28D (7.29CuXNi) (9.1DNixp) 33.39(CuXCu) CE1 = C+(Mn/5)+({Cr+Mo+V}/5)+({Ni+Cu}/15) Pcm = C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mn/15)+(V/10)+5B CE2 = C+((Mn+Si)/6)+({Cr+Mo+V+Cb}/5)+((Ni+Cu)/15)

I hereby certify that the contents of this report are accurate and correct. All test results and operations performed by the material manufacturer are in compliance with material specifications, and when designated by the Purchaser, meet applicable specifications.

Bruce A, Work Metallurgist

DAL

Figure C-5. W6x8.5 Posts, Post Nos. 10 through 12, Test No. GAA-1

		-		CERTI	FIED MATERIAI	TEST REPORT	·				Page 1.
ලා GE	RDAU	CUSTOMER S	SAFETY CORP		ISTOMER BILL TO GHWAY SAFETY	CORP	GRAD A992/A	E 1709-36		PE / SIZE Flange Beam / 6 1	X 8.5#
S-ML-CARTERSVILLE			GROUND ST H 43302-1701	GI US	LASTONBURY,CT SA	06033-0358	LENG' 42'00"	ГН		WEIGHT 37,485 LB	HEAT / BATCH 55028671/02
84 OLD GRASSDALE F ARTERSVILLE, GA 30		SALES ORI 448220/0000			CUSTOMER MA	TERIAL Nº		FICATION / DA	ATE or REVISIO	ON	
SA							2-A992	A992M-11 A709M-11			
CUSTOMER PURCHASE (201562143 IB-	RDER NUMBER		BILL OF LAD 1323-0000008		DATE 07/17/2	013		A36M-08			
CHEMICAL COMPOSITION C Mn % %	P %	S %	Si %	Cu %	Ni %	Cr %	Mo %	V %	Nb %	N %	Pb %
0.14 0.90	0.015	0.020	0.19	0.29	0.10	0.07	0.034	0.016	0.002	0.0090	0.0080
CHEMICAL COMPOSITION Sn % 0.012											
MECHANICAL PROPERTIES		1949									
Flore	C	3.Л					VSO				
Elong. %	I: 8	3/L neb 000	UT: PS 7430	S I 00	U M 5	rs Pa 2	YS 0.: PSI 5090	570 0	Y M 3'	Pa Si	
20.20 22.10	8.	2021 000 000	UTT PS 7430 7400	00	5	(S Pa 2 0	951 5090 5480	0	35	52 51 78	
20.20	8.	000	7430	00	5	2	5090	0	35	51	

Figure C-6. W6x8.5 Posts, Post No. 15, Test No. GAA-1

	oday for Tomorrow	HNOLOGIES INC.	MATERIAL SHIPMENT NUMBI PURCHASE ORD	ER: 28	TIFICATE 384 bal Karla
RENO, OH 45			SHIPMENT DA		3/2016
Phone: 740-376 Fax: 740-376-9 (888) 607-4790	50 T T T T			3E: 1	
CONSI	GNED TO		SHIP TO		
4800 N	at Roadside Safety .W. 35th Street , NE 68524		4800 N.W. 35th Street Lincoln, NE 68524		
CONSIGNED	ITEM NUMBER	DESCRIPTIC	DN LC)T#	SHIP VIA
40	GB14SH1	Composite Guardrail Block Post w/hanger	14" for Steel 1604	28/1000	UPS Freight

MADE IN USA

Mondo Polymer Technologies, Inc.'s product, the Polymer Offset Block named MondoBlock, is of the same formulation, composition and test properties which were qualified and NCHRP 350 crash tested and approved by the Federal Highway Administration Approval No. #HSA-10/B-39A

All materials meet specifications required

	* CHOY L FOGLE Notary Public - State of Ohio My Commission Expires 10/27/2021 12-8-16
Approved by: Mayin Elli;	Date: 13/8/16
Print Name:	Position: _ GENERAL Manabor
Print Name:	Position:

Figure C-7. Composite Blockout, Test No. GAA-1

	CENTRAL NEBRASKA WOOD PRESERVERS,	NC.		
	P. O. Box 630 • Sutto Pone 402-773 FAX 402-773	3-4319		
R#16-692 5.5	<7.5x46" Timber Post			
Black Paint tag				
une2016 SM	Γ		Data	cloully
			Date:	5/24/16
	CERTIFICATE O	FCOMPLI	IANCE	
Shipped TC	: Midukert Machiney + Supply	BOL# _	10054053	
Customer P	0# 3260	Preservative: <u>C</u>	CA-C 0.60 pcf A	WPA_UC4B_
Part #	Physical Description	# of Pieces	Charge #	Tested Retention
656846P.ST	5.5-7.5-46" BCT	42	22215	, 634
G-56806.5P57	5.5x 7.5 - 6.5 Rub Post	42	22225	,633
GS 68065P57	5.5 x 7.5 - 6.5' Rub Post	42	22226	.660
656806,5PST	5.5×7.5-6.5° RubPost	168	22185	.650
	6x8-23" Rub Black	168	22240	.730
GS6823BLK				
356823BLK				

Figure C-8. BCT Timber Post, Post Nos. 1 and 2, Test No. GAA-1

	CENTRAL NEBRASKA WOOD PRESERVERS			
	P. O. Box 630 • Su Pone 402-7 FAX 402-77	73-4319		
R#17-28	2 BCT Posts 70 Acct AND V	Vood Blocks	for Bullnose	
Nov2016	SMT Wood Blockouts are	painted Light	Blue	
	8		Date:	11/11/16
	CERTIFICATE (midwast Machinery + Su	PP ¹ 7 BOL#_	100 5 5387	
Customer P	0# 3339	Preservative: C	CA-C 0.60 pcf A	WPA UC4B_
Part #	Physical Description	# of Pieces	Charge #	Tested Retention
-	Physical Description	# of Pieces	Charge #	Tested Retention
\$r6806;587				
бкько <i>6;51</i> 7 5кько6,507	bx8-6.5" PST	35	22973	:679
5R6806;587 5R6806;5087 5S6846857	6x8-6.5" PST 6x8-6.5" CRT	35	22973 22973	:679 .679
5R6806;587 5R6806;5087 5S6846857	6×8-6.5" PST 6×8-6.5" CRT 5.5-7.5-46"BCT	35 25 42	22973 22973 22927	;679 .679 .638
5R6806;587 3R6806,5087 3S6846957	6×8-6.5" PST 6×8-6.5" CRT 5.5-7.5-46"BCT	35 25 42	22973 22973 22927	;679 .679 .638
5R6806;587 3R6806,5087 3S6846957	6×8-6.5" PST 6×8-6.5" CRT 5.5-7.5-46"BCT	35 25 42	22973 22973 22927	;679 .679 .638
ÖR 6806;587 386806;5687 386846957 686121486	bx8-6.5" PST bx8-6.5" CRT 5.5-7.5-46"BCT 6x12-14" OCD	35 25 42 168	22973 22973 22927 22927	;679 .679 .638 .638
SR 6806;587 3R 6806.5CET SS6846P5T 6R 612 JYBCK	bx 8 - 6.5" PST bx 8 - 6.5" CRT 5.5 - 7.5 - 46.BCT 6x 12 - 14" ocO e referenced material has been and tested in accordance with AWPA	35 35 42 168 VA: Central Nebraska products listed above standards, Section 236	22973 22973 22927 22927 22927	.679 .679 .638 .638 .638
SR 6806;587 SR 6806.5CET SS6846PST 6R 612 JYBCK	bx 8 - 6.5" PST bx 8 - 6.5" CRT 5.5 - 7.5 - 46'BCT 6x 12 - 14" ocD e referenced material has been	35 35 42 168 VA: Central Nebraska products listed above standards, Section 236	22973 22973 22927 22927 22927	.679 .679 .638 .638 .638
SR 6806;587 3R 6806.5CET SS6846P5T 6R 612 JYBCK	bx 8 - 6.5" PST bx 8 - 6.5" CRT 5.5 - 7.5 - 46.BCT 6x 12 - 14" ocO e referenced material has been and tested in accordance with AWPA	35 35 42 168 VA: Central Nebraska products listed above standards, Section 236	22973 22973 22927 22927 22927	.679 .679 .638 .638 .638
SR 6806; SB7 SR 6806; SCRT SS6846PST 6R 612 148CK I certify the abov produced, treated standards and con	bx 8 - 6.5" PST bx 8 - 6.5" CRT 5.5 - 7.5 - 46.BCT 6x 12 - 14" ocO e referenced material has been and tested in accordance with AWPA	35 35 42 168 VA: Central Nebraska products listed above standards, Section 236	22973 22973 22927 22927 22927	.679 .679 .638 .638 .638

Figure C-9. BCT Timber Post, Post Nos. 28 and 29, Test No. GAA-1

				Certifie	d Analy	ysis	in the state of th	
Trinity Hi	ighway Pi	roducts, LLC	5 					
550 East R	tobb Ave			Order 1	Number: 121532	4 Pro	I Ln Grp: 9-End Terminals (Dom)	
Lima, OH 4	45801			Custor	mer PO; 2884	ðî.	As of: 4/14/14	
Customer:	MIDW	EST MACH.& SUPPLY CO	Э.	BOLI	Number: 80821		Ship Date:	
	P. O. B	OX 703			ment#: 1 ped To: NE		ndation Tubes Green Pain	
	MILFO.	RD, NE 68405			e State: KS	R#1	5-0157 September 2014 SM	Γ
Project:	STOC	ς						
Qty	Part#		Spee CL	TY Heat Code/ Heat	Yielđ	TS	Elg C Mn P S Si Cu Cb Cr Vn ACW	
10	701A	25X11.75X16 CAB ANC	A-36	A3V3361	48,600	69,000	29,1 0.180 0.410 0.010 0.005 0.040 0.270 0.000 0.070 0.001 4	12 ¹⁰
	701A		A-36	JJ4744	50,500	71,900	$30.0 \hspace{0.1in} 0.150 \hspace{0.1in} 1.060 \hspace{0.1in} 0.010 \hspace{0.1in} 0.035 \hspace{0.1in} 0.240 \hspace{0.1in} 0.270 \hspace{0.1in} 0.002 \hspace{0.1in} 0.090 \hspace{0.1in} 0.021 \hspace{0.1in} 4$	
12	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500	0173175	55,871	74,495	31.0 0.166 0.610 0.012 0.009 0.010 0.030 0.000 0.030 0.000 4	
15	736G	5'/TUBE SL/.188"X6"X8"FLA	A-500	0173175	55,871	74,495	31.0 0.160 0.610 0.012 0.009 0.010 0.030 0.000 0.030 0.000 4	
12	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500	0173175	55,871	74,495	31.0 0.160 0.610 0.012 0.009 0.010 0.030 0.000 0.030 0.000 4	
5	783A	5/8X8X8 BEAR PL 3/16 STP	A-36	10903960	56,000	79,500	28.0 0.180 0.810 0.009 0.005 0.020 0.100 0.012 0.030 0.000 4	
8	783A		A-36	DL13106973	57,000	72,000	22.0 0.160 0.720 0.012 0.022 0.190 0.360 0.002 0.120 0.050 4	
20	3000G	CBL 3/4X6'6/DBL	HW	99692				
25	4063B	WD 6'0 POST 6X8 CRT	HW	43360		15		
15	4147B	WD 3'9 POST 5.5"X7.5"	HW	2401				
20	15000G	6'0 SYT PST/8.5/31" GR HT	A-36	34940	46,000	66,000	25.3 0.130 0.640 0.012 0.043 0.220 0.310 0.001 0.100 0.002 4	
10	19948G	.135(10Ga)X1.75X1.75	HW	P34744				
2	33795G	SYT-3"AN STRT 3-HL 6'6	A-36	JJ6421	53,600	73,400	31.3 0.140 1.050 0.009 0.028 0.210 0.280 0.000 0.100 0.022 4	
4	34053A	SRT-31 TRM UP PST 2'6.625	A-36	JJ5463	56,300	77,700	31.3 0.170 1.070 0.009 0.016 0.240 0.220 0.002 0.080 0.020 4	
			80					
							1 of 3	

Figure C-10. Foundation Tubes, Test No. GAA-1

1a, OH	onor				
	MEDWEST MACH & SUPPLY CO. P. O. BOX 81097 LINCOLN, NE 68501-1097	Sales Order: Customer PO: BOL # Document #	2030 43073	Print Date: 6/30/08 Project: RESALE Shipped To: NE Use State: KS	
	•	Trin	ity Highway Produc	s. LLC	
*	Certificate (f Compliance For Th	inity Industries. Inc. *	* SLOTTED RAIL TERMINAL **	
			HRP Report 350 Co		
					8
:05	Description				
an a	5/8"X10" GR BOLT A307	n a frankrightern annar og sjærge frem hand hend som af fil stærere	# 18 mar / 19 Mar 19		an a
	5/8"X18" GR BOLT A307	ж.			
	1" ROUND WASHER F844 1" HEX NUT A563				
	WD 60 POST 6X8 CRT				MGSBR
			×		TIGODK
	WD BLK 6X8X14 DR				
	NAIL 16d SRT				
	WD 39 POST 5.5X7.5 BAND				
	STRUT & YOKE ASSY		5.W	<i></i>	
	SLOT GUARD '98			(Srin	and Strut
39	3/8 X 3 X 4 PL WASHER			0,00	
					090453-8
					- , - , <i>- , - , - , - , - , - , - , - ,</i>
a delive	ery, all materials subject to Trinity Highway	Products , LLC Storag	te Stain Policy No. LG-	02.	
00000000	LUSED WAS MELTED AND MANUFAC				
STEE	L USED WAS MELTED AND MANUFAC	CTURED IN USA AN	d complies with t	HE BUY AMERICA ACT	
		THE CARE WE READE	TATALLY TO A DIS PORT & POOL		
	IR GALVANIZED MATERIAL CONFORM				
	MPLY WITH ASTM A-307 SPECIFICAT				
TS CO	MPLY WITH ASTM A-563 SPECIFICATIO				
TS COM		AISI C-1035 STEEL AND	NEALED STUD 1" DIA	ASTM 449 AASHTO M30, TYPE II BREAKI	NG .
TS CO S CON DIA CA	BLE 6X19 ZINC COATED SWAGED END A			1	
TS CO TS CON DIA CA ENOTH	-49100LB		TO IN ADDRESS OF A		
TS CO S CON DIA CA NOTH	ABLE 6X19 ZINC COATED SWAGED END A 1-49100 LB 2, County of Allen. Swom and Subscribed befor	enethis 10th day of Ju		the ac	IND R
TS CO S CON DIA CA ENOTH	-49100LB	enethis 30th day of Ju	Tr	nity Highway Products, LLC	Wants
TS CO S CON DIA CA NOTH	p, County of Allen. Swom and Subscribed befor	ente this 19th day of Ju JR	Tr	nity Highway Products, LLC (1) 05 rtified By:	alamb

Figure C-11. Ground Strut Assembly, Test No. GAA-1

. .

.

No: MAR 268339

INDEPENDENCE TUBE CORPORATION P/0 No 4500240795 6226 W. 74TH STREET Re1 CHICAGO, IL 60638 S/0 No MAR 280576-001 Tel: 708-496-0380 Fax: 708-563-1950 B/L. NO MAR 163860-003 Shp 09Mar 15 Inv No Inv Sold To: (5016) Ship To: (1) STEEL & PIPE SUPPLY STEEL & PIPE SUPPLY 1003 FORT GIBSON ROAD 1003 FORT GIBSON ROAD CATODSA, OK 74015 CATOOSA, OK 74015 Tel: 918-266-6325 Fax: 918 266-4652 CERTIFICATE of ANALYSIS and TESTS Cent. No: MAR 268339 05Mar 15 Part No 0010 Wgt ROUND A500 GRADE B(C) Pcs 2.375"OD (2"NPS) X SCH40 X 21' 111 8,508 Pcs Wgt Heat Number Tag No E86298 927111 37 2,836 YLD=69600/TEN=79070/ELG=24.2 927113 37 2,836 E86298 E86298 927114 37 2,836 *** Chemical Analysis *** Heat Number C=0.1700 Mn=0.5100 P=0.0100 S=0.0110 Si=0.0190 A1=0.0450 E86298 Cu=0.0300 Cr=0.0300 Mo=0.0030 V=0.0010 Ni=0.0100 Cb=0.0010 MELTED AND MANUFACTURED IN THE USA R#15-0626 H#E86298 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN THE USA. BCT Pipe Sleeves INDEPENDENCE TUBE PRODUCT IS MANUFACTURED, TESTED, AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS. June 2015 SMT CURRENT STANDARDS: MATERIAL IDENTIFIED AS ASOO GRADE B(C) MEETS BOTH ASTM A500 GRADE & AND A500 GRADE C SPECIFICATIONS.

TEST CERTIFICATE

Page: 1 Last

09Mar 15 13:22

Figure C-12. BCT Post Sleeve, Test No. GAA-1

52/52	Trivity High	Second Decard	randa TTP		Ce	rtified Ana	lysis								Phin.	ijigher Alas	ny Pros	in the
Щ	2548 N.E. 28		unto, Last			Order Number: 109	5100									ALC: NO	Į	*
PAGE	•	MEL GA-				Oustomer PO: 204												
	Ft Worth, TX	*****	5.7.4 cm a cranit \$7.00			BOL Number: 24								A	sof: G	120,028		
			MACH& SUPPLY CO	r.			62										2.	
	. ł	. O. BOX	81097			Document #: 1												
						Shipped To: NE								_				
	<u>1</u>	INCOLN,	NE 68501-1097			Use State: KS										8		
~	Project: P	UESALB																
MACHINERY			×															
ÉH.	Qty	Parts	Description	Snec CL 7	IV Next Code	/Heat# Yield	15	Eig	Ċ	Mus .	E ^a	5	SI	Cu	Ch	Cr	Va	ACW
MAC	25	6G	12/63/8	M-189 A	24964	64,230	\$1,300	25.4	0.150	0.720	0.012	1.001	0.040	0.080	0.000	0.060	0.000	4
MIDWEST		701 A	.25X11.75X16 CAB ANC	A-36	4153095	44,500	60,800	34.0	0.240	0.750	0.012	0.003	0.020	0.020	0.000	0.040	0.062	4
MID	10	742G	60 TUBE MJ.188X8X6	A-590	A8F1160	74,000	\$7,000	25.2	0.050	0.670	0.013	0.005	0.030	0.220	0.009	0.060	0.021	4
	et= 20	782.G	Sæ"X3"X6" BEAR PL/OF	A-36	6105195	45,700	69,900	23.5	0.130	0.930	0.010	0.005	0.020	0.230	600.0	0.070	0.006	4
	- 40	907G	12/BUFFER/ROLLED	M-180 A .	1.0049	\$4,200	73,500	25,0	0.160	0.700	0.011	0.008	0.020	1.200	0.000	9.100	00010	4
288										2							12	
Ĕ						Q.1												
ie Ai	Upon deliv	ery, all ma	etrials subject to Trinity I	Highway Produc	ts, LLC Ston	age Stain Policy No. LG	062.							÷				
402-761-3288	ALL GUÀI ALL OTHI	RDRAIL I IR GALV	AS MELTED AND MANU MEETS AASHTO M-180 ANIZED MATERIAL O), ALL STRUCT ONFORMS WIT	URAL STEE TH ASTM-12	il MEETS ASTM A36 3.					•	*				F		
16:36			TTH ASTM A-307 SPEC TH ASTM A-563 SPECI															
	344" DIA CA STRENGTH) ZINC COATED SWAGE B	D END AISI C-10	035 STEEL AP	VNEALED STUD I" DIA	ASTM 449 AAS	shto i	430, T	VPEI	I BRE	4.KIN(3					
/20	State of Texa	ss, County	of Tarrant. Sworn and subse	xibed before me t	his 20th day of	'hune, 2008									1			
86/84/2889	Notary Pu Commissi		RACHEL R / Notary State of My Cameias	Texas			inity Highway rtified By:	- Produc	ts, LI	uc ţ	H	la	ňů	2 Q	mm	1. 1	1	

Figure C-13. Anchor Bearing Plate and Bracket Assembly, Test No. GAA-1

December 14, 2017 MwRSF Report No. TRP-03-377-17

91

M	LCC	R		LOT NO. 366055B			Post Office Box 6100 Saint Joe, Indiana 4678
FAS	TENER L	DIVISIO	3 N				Telephone 260/337-16
CUSTOMER NO							
8061 STRU TEST REPORT	JCTURAL BOLT C	CO LLC FB482520		OR ORDER #	957233		
		1/08/16	LUS	I PARI #			
DATE SHIPPE	ED	1/21/16		TOMER P.O. 4	₿ 18131	1 DH	
NAME OF LAB	B SAMPLER:	JOSEPH BYE	RLY, LAB TE	CHNICIAN			1.0
**************************************	NO QUANT	TED HATERIA		RT########## RIPTION	*******	6 6	11 3
175647			055B 1-8	GR DH HV H	H.D.G.	11	21
MANUFACTURE	E DATE 10/01/1			NUT H.D.G./G		n	1
CHEMISTRY	,	MA	TERIAL GRADE	-1065			
MATERIAL	HEAT				EAT ANALYSIS) BY	MATERIAL SUPPLI	ER
NUMBER	NUMBER	C H	NP	\$ SI		NUCOR	STEEL - SOUTH CAROL
RM030068	DL15103032	.45 .	67 .003	.019 .20	1		
	AL PROPERTIES			TM A563-07a			
	CORE	PROOF			E STRENGTH		-
(R30N)	HARDNESS (RC)	90900	LBS	(LBS)	STRESS (PSI)		
N/A	30.8	PAS	S NJ	A	N/A		
NZA	28.6	PAS	S N	A	N/A		
N/A	26.6	PAS		/A	N/A		
NZA	26.2	PAS		A	NZA		
N/A AVERAGE VAL	24.5 UES FROM TEST	PAS	s N/	/A	N/A		
	27.3						
PRODUCTION	LOT SIZE	42800 PC	s				
1. 0.0027	78 2. 0.00				ZING PERFORMED 37 5. 0.00321		7. 0.00603
8. 0.0067 15. 0.0028 AVERAGE THI	78 2. 0.00 76 9. 0.00 87 ICKNESS FROM 1	0892 3. 0315 10. 15 TESTS	0.00428 0.00321	4. 0.0023 11. 0.0037	5. 0.00321 71 12. 0.00264	6. 0.00228	7. 0.00603 14. 0.00348
8. 0.0067 15. 0.0028 AVERAGE THI	78 2. 0.00 76 9. 0.00 87 ICKNESS FROM 1	0892 3. 0315 10. 15 TESTS	0.00428 0.00321	4. 0.0023 11. 0.0037	5. 0.00321	6. 0.00228	
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATM	78 2. 0.00 76 9. 0.00 87 ICKNESS FROH 1 MENT - AUSTENJ NS PER ASME B1	0892 3. 0315 10. 15 TESTS TTIZED, OIL 18,2.6-2012	0,00428 0,00321 .00388 QUENCHED &	4. 0.0023 11. 0.0037 TEMPERED (M	57 5. 0.00321 71 12. 0.00264 41N 800 DEG F)	6. 0.00228	
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC	78 2. 0.00 76 9. 0.00 37 ICKNESS FROH 1 HENT - AUSTENI NS PER ASME BI CTERISTIC	0892 3. 0315 10. 15 TESTS TTIZED, OIL 18.2.6-2012 #SAMPLES T	0,00428 0.00321 .00388 QUENCHED & ESTED M1	4. 0.0023 11. 0.0037 TEMPERED (M	57 5. 0.00321 71 12. 0.00264 41N 800 DEG F) MAXIMUM	6. 0.00228	
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC Width	78 2. 0.00 76 9. 0.00 87 ICCKNESS FROM 1 MENT - AUSTENI WS PER ASME BI DTERISTIC Across Corner	0892 3. 0315 10. 15 TESTS (TIZED, OIL 18:2.6-2012 #SAMPLES T 5 8	0,00428 0.00321 .00388 QUENCHED & ESTED M1	4. 0.0023 11. 0.0037 TEMPERED (M INIMUM M 1.823	87 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833	6. 0.00228	
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC	78 2. 0.00 76 9. 0.00 87 ICCKNESS FROM 1 MENT - AUSTENI WS PER ASME BI DTERISTIC Across Corner	0892 3. 0315 10. 15 TESTS TTIZED, OIL 18.2.6-2012 #SAMPLES T	0,00428 0.00321 .00388 QUENCHED & ESTED M1	4. 0.0023 11. 0.0037 TEMPERED (M	57 5. 0.00321 71 12. 0.00264 41N 800 DEG F) MAXIMUM	6. 0.00228	
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC Width	78 2. 0.00 76 9. 0.00 87 ICCKNESS FROM 1 MENT - AUSTENI WS PER ASME BI DTERISTIC Across Corner	0892 3. 0315 10. 15 TESTS (TIZED, OIL 18:2.6-2012 #SAMPLES T TS 8	0,00428 0.00321 .00388 QUENCHED & ESTED M1	4. 0.0023 11. 0.0037 TEMPERED (M INIMUM M 1.823	87 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833	6. 0.00228	
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC Width	78 2. 0.00 76 9. 0.00 87 ICCKNESS FROM 1 MENT - AUSTENI WS PER ASME BI DTERISTIC Across Corner	0892 3. 0315 10. 15 TESTS (TIZED, OIL 18:2.6-2012 #SAMPLES T TS 8	0,00428 0.00321 .00388 QUENCHED & ESTED M1	4. 0.0023 11. 0.0037 TEMPERED (M INIMUM M 1.823	87 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833	6. 0.00228	
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC Width	78 2. 0.00 76 9. 0.00 87 ICCKNESS FROM 1 MENT - AUSTENI WS PER ASME BI DTERISTIC Across Corner	0892 3. 0315 10. 15 TESTS (TIZED, OIL 18:2.6-2012 #SAMPLES T TS 8	0,00428 0.00321 .00388 QUENCHED & ESTED M1	4. 0.0023 11. 0.0037 TEMPERED (M INIMUM M 1.823	87 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833	6. 0.00228	
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC Width	78 2. 0.00 76 9. 0.00 87 ICCKNESS FROM 1 MENT - AUSTENI WS PER ASME BI DTERISTIC Across Corner	0892 3. 0315 10. 15 TESTS (TIZED, OIL 18:2.6-2012 #SAMPLES T TS 8	0,00428 0.00321 .00388 QUENCHED & ESTED M1	4. 0.0023 11. 0.0037 TEMPERED (M INIMUM M 1.823	87 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833	6. 0.00228	
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC Width	78 2. 0.00 76 9. 0.00 87 ICCKNESS FROM 1 MENT - AUSTENI WS PER ASME BI DTERISTIC Across Corner	0892 3. 0315 10. 15 TESTS (TIZED, OIL 18:2.6-2012 #SAMPLES T TS 8	0,00428 0.00321 .00388 QUENCHED & ESTED M1	4. 0.0023 11. 0.0037 TEMPERED (M INIMUM M 1.823	87 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833	6. 0.00228	
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC Width	78 2. 0.00 76 9. 0.00 87 ICCKNESS FROM 1 MENT - AUSTENI WS PER ASME BI DTERISTIC Across Corner	0892 3. 0315 10. 15 TESTS (TIZED, OIL 18:2.6-2012 #SAMPLES T TS 8	0,00428 0.00321 .00388 QUENCHED & ESTED M1	4. 0.0023 11. 0.0037 TEMPERED (M INIMUM M 1.823	87 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833	6. 0.00228	
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC Width	78 2. 0.00 76 9. 0.00 87 ICCKNESS FROM 1 MENT - AUSTENI WS PER ASME BI DTERISTIC Across Corner	0892 3. 0315 10. 15 TESTS (TIZED, OIL 18:2.6-2012 #SAMPLES T TS 8	0,00428 0.00321 .00388 QUENCHED & ESTED M1	4. 0.0023 11. 0.0037 TEMPERED (M INIMUM M 1.823	87 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833	6. 0.00228	
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC Width	78 2. 0.00 76 9. 0.00 87 ICCKNESS FROM 1 MENT - AUSTENI WS PER ASME BI DTERISTIC Across Corner	0892 3. 0315 10. 15 TESTS (TIZED, OIL 18:2.6-2012 #SAMPLES T 5 8	0,00428 0.00321 .00388 QUENCHED & ESTED M1	4. 0.0023 11. 0.0037 TEMPERED (M INIMUM M 1.823	87 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833	6. 0.00228	
8. 0.0057 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC Width Thickr	78 2. 0.00 76 9. 0.00 71 ICKNESS FROH 1 HENT - AUSTENI HENT - AUSTENI SPER ASME BJ DTERISTIC Across Corner 1955	1892 3. 1315 10. 15 TESTS 15 TEZED, OIL 18.2.6-2012 #SAMPLES T *\$ 8 32	0.00428 0.00321 .00388 QUENCHED &	4. 0.0022 11. 0.0037 TEMPERED (M INIMUM M 1.623 0.978	57 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833 0.996	6. 0.00228 13. 0.00252	14. 0.00348
8. 0.0057 15. 0.0028 AVERAGE THI HEAT TREATH DIMENSION CHARAC Width Thickr	78 2. 0.00 76 9. 0.00 71 ICKNESS FROH 1 HENT - AUSTENI HENT - AUSTENI SPER ASME BJ DTERISTIC Across Corner 1955	1892 3. 1315 10. 15 TESTS 15 TEZED, OIL 18.2.6-2012 #SAMPLES T *\$ 8 32	0.00428 0.00321 .00388 QUENCHED &	4. 0.0022 11. 0.0037 TEMPERED (M INIMUM M 1.623 0.978	57 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833 0.996	6. 0.00228 13. 0.00252	14. 0.00348
8. 0.0067 15. 0.00286 THI HEAT TREATH JIMENSION CHARAC Width Thickr ALL TESTS SPECIFICAT	ARE IN ACCORT	1892 3. 1315 10. 15 TESTS 15 TESTS 15 TESTS 15 TEST, 15 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 16 TEST, 16 TEST, 17 TEST	0.00428 0.00321 QUENCHED & ESTED M: THE LATEST 1 D CONFORM 1	4. 0.0022 11. 0.0037 TEMPERED (M INIMUM M 1.823 0.978 REVISIONS OF THE SPECI	57 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIHUM 1.833 0.996	6. 0.00228 13. 0.00252 SCRIBED IN THE A SCRIBED/LISTED A	14. 0.00348 Applicable sae and Astm Rove And Were Manupactur
8. 0.0067 15. 0.0028 THI HEAT TREATH JIMENSION CHARAC Width Thickr ALL TESTS SPECIFICAT	ARE IN ACCORT ARE IN ACCORT IDNS, THE 52	1892 3. 1315 10. 15 TESTS 15 TESTS 15 TESTS 15 TEST, 15 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 16 TEST, 16 TEST, 17 TEST	0.00428 0.00321 QUENCHED & ESTED M: THE LATEST 1 D CONFORM 1	4. 0.0022 11. 0.0037 TEMPERED (M INIMUM M 1.823 0.978 REVISIONS OF THE SPECI	57 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIHUM 1.833 0.996	6. 0.00228 13. 0.00252 SCRIBED IN THE A SCRIBED/LISTED A	14. 0.00348 Applicable sae and Astm Rove And Were Manupactur
8. 0.0067 15. 0.0028 THI HEAT TREATH JIMENSION CHARAC Width Thickr ALL TESTS SPECIFICAT	ARE IN ACCORT ARE IN ACCORT IDNS, THE 52	1892 3. 1315 10. 15 TESTS 15 TESTS 15 TESTS 15 TEST, 15 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 16 TEST, 16 TEST, 17 TEST	0.00428 0.00321 QUENCHED & ESTED M: THE LATEST 1 D CONFORM 1	4. 0.0022 11. 0.0037 TEMPERED (M INIMUM M 1.823 0.978 REVISIONS OF THE SPECI	57 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIHUM 1.833 0.996	6. 0.00228 13. 0.00252 SCRIBED IN THE A SCRIBED/LISTED A	14. 0.00348 Applicable sae and astm Rove and were manufactur
8. 0.0067 15. 0.0028 THI HEAT TREATH JIMENSION CHARAC Width Thickr ALL TESTS SPECIFICAT	ARE IN ACCORT ARE IN ACCORT IDNS, THE 52	1892 3. 1315 10. 15 TESTS 15 TESTS 15 TESTS 15 TEST, 15 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 16 TEST, 16 TEST, 17 TEST	0.00428 0.00321 QUENCHED & ESTED M: THE LATEST 1 D CONFORM 1	4. 0.0022 11. 0.0037 TEMPERED (M INIMUM M 1.823 0.978 REVISIONS OF THE SPECI	57 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIHUM 1.833 0.996	6. 0.00228 13. 0.00252 SCRIBED IN THE A SCRIBED/LISTED A	14. 0.00348 Applicable sae and astm Rove and were manufactur
8. 0.0067 15. 0.0028 THI HEAT TREATH JIMENSION CHARAC Width Thickr ALL TESTS SPECIFICAT	ARE IN ACCORT ARE IN ACCORT IDNS, THE 52	1892 3. 1315 10. 15 TESTS 15 TESTS 15 TESTS 15 TEST, 15 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 16 TEST, 16 TEST, 17 TEST	0.00428 0.00321 QUENCHED & ESTED M: THE LATEST 1 D CONFORM 1	4. 0.0022 11. 0.0037 TEMPERED (M INIMUM M 1.823 0.978 REVISIONS OF THE SPECI	57 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIHUM 1.833 0.996	6. 0.00228 13. 0.00252 SCRIBED IN THE A SCRIBED/LISTED A	14. 0.00348
8. 0.0067 15. 0.0028 THI HEAT TREATH JIMENSION CHARAC Width Thickr ALL TESTS SPECIFICAT	ARE IN ACCORT ARE IN ACCORT IDNS, THE 52	1892 3. 1315 10. 15 TESTS 15 TESTS 15 TESTS 15 TEST, 15 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 16 TEST, 16 TEST, 17 TEST	0.00428 0.00321 QUENCHED & ESTED M: THE LATEST 1 D CONFORM 1	4. 0.0022 11. 0.0037 TEMPERED (M INIMUM M 1.623 0.978 REVISIONS OF TO THE SPECI ADDITIONS U.S.A. AND E CERTIFY TI STING LABORA NOT BE REPP	77 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833 0.996 7.996 7.996 7.996 7.996 7.996 7.996 7.1005 AT 7.1005	6. 0.00228 13. 0.00252 13. 0.00252 SCRIBED/ISTED SCRIBED/ISTED ENSUM, TELLURIU MANUFACTURED AN ITFLED MATERIAL N FULL.	14. 0.00348 Applicable sae and astm Rove and were manufactur
8. 0.0067 15. 0.0028 THI HEAT TREAT DIMENSION CHARAC Width Thickr ALL TESTS SPECIFICAT FREE OF ME STEEL USET THE STEEL PROVIDED I TO THE ITE	ARE IN ACCORD ARE IN ACCORD ACTOR SECONDARY ACTORS CONTANT ACTORS CONTANT ACTORS CONTANT ACTORS CONTANT ACTORS CONTANT ACTORS ACTORS ARE IN ACCORD ACTORS A	1892 3. 1315 10. 15 TESTS 15 TESTS 15 TESTS 15 TEST, 15 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 16 TEST, 16 TEST, 17 TEST	0.00428 0.00321 QUENCHED & ESTED M: THE LATEST 1 D CONFORM 1	4. 0.0022 11. 0.0037 TEMPERED (M INIMUM M 1.623 0.978 REVISIONS OF TO THE SPECI ADDITIONS U.S.A. AND E CERTIFY TI STING LABORA NOT BE REPP	 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833 0.996 FTHE METHODS PR FTHE ACTIONS AS DE FTHE PRODUCT WAS THE PRODUCT WAS	6. 0.00228 13. 0.00252 13. 0.00252 SCRIBED/ISTED SCRIBED/ISTED ENSUM, TELLURIU MANUFACTURED AN ITFLED MATERIAL N FULL.	14. 0.00348 Applicable sae and astm Rove and were manufactur
8. 0.0067 15. 0.0028 THI HEAT TREAT DIMENSION CHARAC Width Thickr ALL TESTS SPECIFICAT FREE OF ME STEEL USET THE STEEL PROVIDED I TO THE ITE	ARE IN ACCORT ARE IN ACCORT IDNS, THE 52	1892 3. 1315 10. 15 TESTS 15 TESTS 15 TESTS 15 TEST, 15 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 16 TEST, 16 TEST, 17 TEST	0.00428 0.00321 QUENCHED & ESTED M: THE LATEST 1 D CONFORM 1	4. 0.0022 11. 0.0037 TEMPERED (M INIMUM M 1.623 0.978 REVISIONS OF TO THE SPECI ADDITIONS U.S.A. AND E CERTIFY TI STING LABORA NOT BE REPP	77 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833 0.996 7.996 7.996 7.996 7.996 7.996 7.996 7.1005 AT 7.1005	6. 0.00228 13. 0.00252 13. 0.00252 SCRIBED/ISTED A SCRIBED/ISTED A SCRIBED/ISTED A LATUR REPRESEN A TYUE REPRESEN N FULL.	14. 0.00348 APPLICABLE SAE AND ASTM BOVE AND WERE MANUFACTUR N, OR LEAD WERE USED IN D TESTED IN THE U.S.A. TATION OF INFORMATOR TEST REPORT RELATES ONLY
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATH JIMENSION CHARAC Width Thickr ALL TESTS SPECIFICAT FREE OF ME STELL USE THE STEL THE STEL CHARAC	ARE IN ACCORD CONTENT - AUSTENI SEPER ASME BI STERISTIC Across Corner Tess ARE IN ACCORD TIONS. THE SA CRCUPY CONTANT NO TO PRODUCE T WAS HELTED AN CREDITED CREDITED	1892 3. 1315 10. 15 TESTS 15 TESTS 15 TESTS 15 TEST, 15 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 17 TEST, 16 TEST, 16 TEST, 16 TEST, 16 TEST, 17 TEST	0.00428 0.00321 QUENCHED & ESTED M: THE LATEST 1 D CONFORM 1	4. 0.0022 11. 0.0037 TEMPERED (M INIMUM M 1.623 0.978 REVISIONS OF TO THE SPECI ADDITIONS U.S.A. AND E CERTIFY TI STING LABORA NOT BE REPP	77 5. 0.00321 71 12. 0.00264 41N 800 DEG F) 4AXIMUM 1.833 0.996 7.996 7.996 7.996 7.996 7.996 7.996 7.1005 AT 7.1005	6. 0.00228 13. 0.00252 13. 0.00252 SCRIBED/ISTED A SCRIBED/ISTED A SCRIBED/ISTED A LATUR REPRESEN A TYUE REPRESEN N FULL.	14. 0.00348 APPLICABLE SAE AND ASTM BOVE AND WERE MANUFACTUR N, OR LEAD WERE USED IN D TESTED IN THE U.S.A. TATION OF INFORMATOR TEST REPORT RELATES ONLY
8. 0.0067 15. 0.0028 AVERAGE THI HEAT TREATON JIHENSION CHARAC Width Thickr ALL TESTS SPECIFICAL SPEC	ARE IN ACCORD ARE IN ACCORD ACTOR SECONDARY ACTORS CONTANT ACTORS CONTANT ACTORS CONTANT ACTORS CONTANT ACTORS CONTANT ACTORS ACTORS ARE IN ACCORD ACTORS A	2892 3. 1315 10. 1315 10. 15 TESTS TIZED, OIL 18.2.6-2012 #SAMPLES T *S 8 8 32 DANCE WITH TS 7 10 10 10 10 10 10 10 10 10 10	0.00428 0.00321 QUENCHED & ESTED M: THE LATEST 1 D CONFORM 1	4. 0.0022 11. 0.0037 TEMPERED (M INIMUM M 1.623 0.978 REVISIONS OF TO THE SPECI ADDITIONS U.S.A. AND E CERTIFY TI STING LABORA NOT BE REPP	THE METHODS PR THE METHODS PR CHAXIMUM 1.833 0.996 THE METHODS PR CFICATIONS AS DE THE PRODUCT WAS SOF BISHUTH, SE THE PRODUCT WAS THE PRODUCT WAS THE PRODUCT WAS THE PRODUCT WAS THE PRODUCT WAS THE PRODUCT WAS THE PRODUCT WAS THE PRODUCT WAS THE PRODUCT WAS THE PRODUCT	6. 0.00228 13. 0.00252 13. 0.00252 SCRIBED/ISTED SCRIBED/ISTED ENSUM, TELLURIU MANUFACTURED AN ITFLED MATERIAL 'N FULL.	14. 0.00348 APPLICABLE SAE AND ASTM BOVE AND WERE MANUFACTUR N, OR LEAD WERE USED IN D TESTED IN THE U.S.A. TATION OF INFORMATOR TEST REPORT RELATES ONLY

Page 1 of 1

Figure C-14. BCT Cable Anchor Assembly, Test No. GAA-1

Trinity Highway Products , LLC 550 East Robb Ave. Lima, OH 45801

Customer: GUARDRAIL SYSTEMS, INC 8000 SERUM AVE. Sales Order: 1210536 Customer PO: VERBAL TRENT BOL # 79448 Document # 1 Print Date: 12/6/13 Project: RESALE Shipped To: NE Use State: NE

RALSTON, NE 68127

Trinity Highway Products. LLC

Certificate Of Compliance For Trinity Industries, Inc. ** SLOTTED RAIL TERMINAL **

NCHRP Report 350 Compliant

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT" ALL GAL VANIZED MATERIAL CONFORMS WITH ASTM-123 (US DOMESTIC SHIPMENTS)

ALL GAL VANIZED MATERIAL CONFORMS WITH ASTM A123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTM F-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTM F-2329.

3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH – 46000 LB

State of Ohio, County of Allen. Sworn and Subscribed before me this 6th day of December, 2013

Notary Public: Commission Expires 2011NT801

Trinity Highway Products, LLC Certified By: Quality Assurance

2 of 2

Figure C-15. BCT Cable Anchor Assembly, Test No. GAA-1

Trinity Metals Laboratory A DIVISION OF TRINITY INDUSTRIES 4001 IRVING BLVD. 76247 - P.O. BOX 568887 DALLAS, TX 75356-8887 Phone: 214.589.7591 FAX: 214.589.7594	TEST REPORT	35006 NVLAD NVLAF LAB CODE 200854-0
Lab No: 15040472F KEITH HAMBURG TRINITY HWY PRODUCTS, LLC #55 ROLLFORM LIMA, OH 45801	Received Date: 04/22/2015 Heat Code <mark>: 1504241.</mark> Heat Number: PO or Work Order: 55-87382 Test Spec: F606 ASTM METHODS Other Information:	Completion Date: 04/23/2015 Weld Spac: Material Type: A 307 A Material Size: 5/8" x 10" GR BOLT
OTHER TEST:		
Type: HARDNESS ROCKWELL BW Test Spec: E-18		Quantity amount: 12
Bolt "A": 86.0 - 85.5 - 87.3 - 85.5		
Bolt "B": 88.4 - 85.2 - 86.7 - 85.0		
Bolt "C": 85.5 - 82.3 - 85.2 - 84.2		
Type: BOLT TENSILE STRENGTH Test Spec: F606		Quantity amount: 3
Bolt tensile "A" fractured @ 16,383 lbs. i	n the threads (min. 13,550 lbs.).	
Bolt tensile "B" fractured @ 16,522 lbs. i	n the threads (min. 13,550 lbs.).	
Bolt tensile "C" fractured @ 16,349 lbs. i	n the threads (min. 13,550 lbs.).	
Type: HEAD MARKINGS TRN 307A USA S		Quantity amount: 1
Ve certify the above results to be a true and accurate rep oport will void certification. NVLAP Certificate of Accredit ertification, approval, or endorsement by NVLAP, NIST, o	alion effective through 12-31-15.This report may no or any agency of the federal government.	n or partial reproduction of this not be used to claim product Wishing Bottom Michael S. Bewlon, PE
	Page 1 of 1	

Figure C-16. 10-in. (254-mm) Post Bolts, Test No. GAA-1

			nc			LUAU					33406 is8 Cold Spriving Road ine. Why: orsun 53080 [262] 268-2400 1-800-437-8789 Fax (262) 268-2570
Melted in US/				CHA	RTER S	TEEL TE	ST RE	PORT			Pak (202) 200-2570
						Cust P.O.					109642
						tomer Part #					T10005
					Charter	Sales Order Heat #					50039700
						Ship Lot #					4416398
		r Group LLC	- Berea	Plant		Grade				1018 R A	K FG RHQ 1-5/32
		ley Road				Process Finish Size					HRCC 1-5/32
	OH-440	f Leisinger				Ship date					29-JUL-16
I hereby certify that		0	ein has be	enmanula	ctured in acc		ne specific	ations and s	tandards lis	ted below a	
these requirement	s. The reco	ording of false, fic	titious and			or entries on thi		int may be p	unishable a	s a felony ut	der føderal statute.
Lab Code: 7388 CHEM	с	MN	P	s		NI			0.11		N.
%Wt	.18	.65	.008	.014	Sł .080	.05	CR .08	MO .02	CU .10	SN .009	.003
	AL	N	в	TI	NB						
	.024	.0090	.0001	.001	.001						
	ACTYP=R	H SURFACE-1		MACRO	ETCH RAN	OM-1	м	ACRO ETCH	CENTER	i	
TENSILE (KSI) REDUCTION OF A ROCKWELL B (HF NUM DECAR REDUCTION	19W) 16=1	# of Tests 2 2 2		Teat n Min Valu 65.5 55 71		Ing Lot # 1189 Max Value 65.6 55 71 AVE DECAR	9	Mean 65.6 55 71 .004	Value	RA	isile LAB = 0350-02 LAB = 0358-02 LAB = 0358-02
Specifications:	C) de Me Cu	nufactured per larter Steel certi tectora in piace sets customer a listomer Bocumer	fies this p to measu pecificatio	roduct is i re for the p ons with an	ndistinguist presence of ny applicable	nable from bas radiation with	chground in our pro l exception ted = 01-	ocase & process	klucts.	ustomer do	cuments:
Melt Source: Charler Steel Saukville, WI, US/ Rem: Load1.Fax0					ACCREM Testing L	aboratory	This MT	Man	Janice B ager of Qual	need	

Figure C-17. ⁵/₈-in. (16-mm) Dia. Nut, Test No. GAA-1

CHARTER STEEL A Division Charter M	pi anulacturing Company, Inc	CH	EN ARTER STEE	IAIL EL TE ST	REPO	DRT		Saukville,	Cold Springs Roz Waconsin 5309 [262] 268-24(]-890-437-876 xi [262] 268-257
Melted in USA Man	utactured in US.	A							
Johnstown 1 124 Laurel A	Wire Technologi	es	Customer Charter Sales Ship						8711 AXA15CA-5/ 3008403 2033738 207299 (FG RHQ 5/ H) 5/
Johnstown, I	PA-15908		Shi	p date					07-OCT-1
I hereby certify that the ma these requirements. The re	terial described herein acording of faise, fictiti	ious and maudulen.	statements or entrie	es on this do	pecification	ns and stand ay be punis	lards listed hable as a f	below and the	al il salisfies lederal statut
Lab Code: 125544 CHEM C %Wi .13 AL .050 JOMINY(HRC)	MN .35 N .0050	P S .008 .002 B Ti .0001 .001	NB	NI .D3	CR .08	MO .01	CU .05	9N .003	V .001
J1 • 40									
JONN'N SI	AMPLE TYPE ENGLIS	iH=C	D(=,19)					
Johnija o	AMPLE TYPE ENGLIS								
TENSILE (KSI) REDUCTION OF AREA (%)	# of Testa 2 2		ssults of Rolling Lot	# 2072932 X Value 4		Mean Valu 58,1 67	5		LAB # 0358-04
TENSILE (KSI)	# of Tests 2 2	Test n Min Valu 57.8	ssulta of Rolling Lot 9 Ma 58: 87	# 2072932 X Value 4	ich)=.002	58.1	ä	TENSILE	LAB # 0358-0
TENSILE (KSI) REDUCTION OF AREA (%) NUM DECARE=2 REDUCTION RATIO=14 Specifications: N	# of Tests 2 2	Test n Min Valu 57.8 67 arter Steol Qualit (fications with ar	sulta of Rolling Lot 9 Ma 58 57 AVE y Manual Rey Date	# 2072932 xx Value 4 DECARB (Im 9/12/12 or Steel exce	aptions f	58. 1 67		TENSILE RA LAB 4	LAB = 0358-04 = 0359-04
TENSILE (KSI) REDUCTION OF AREA (%) NUM DECARE=2 REDUCTION RATIO=10 Specifications: N M	# of Testa 2 2 60:1 Aanufactured per Ch Asts customer spec	Test n Min Valu 57.8 67 arter Steol Qualit (fications with ar	y applicable Chart	# 2072932 xx Value 4 DECARB (Im 9/12/12 or Steel exce	aptions f	58. 1 67		TENSILE RA LAB 4	LAB = 0358-04 = 0359-04
TENSILE (KSI) REDUCTION OF AREA (%) NUM DECARE=2 REDUCTION RATIO=10 Specifications: N M	# of Testa 2 2 60:1 Aanufactured per Ch Asts customer spec	Test n Min Valu 57.8 67 arter Steol Qualit (fications with ar	y applicable Chart	# 2072932 xx Value 4 DECARB (Im 9/12/12 or Steel exce	aptions f	58. 1 67		TENSILE RA LAB 4	LAB = 0358-04 = 0359-04
TENSILE (KSI) REDUCTION OF AREA (%) NUM DECARE=2 REDUCTION RATIO=10 Specifications: N M	# of Testa 2 2 60:1 Aanufactured per Ch Asts customer spec	Test n Min Valu 57.8 67 arter Steol Qualit (fications with ar	y applicable Chart	# 2072932 xx Value 4 DECARB (Im 9/12/12 or Steel exce	aptions f	58. 1 67		TENSILE RA LAB 4	LAB = 0358-04 = 0359-04
TENSILE (KSI) REDUCTION OF AREA (%) NUM DECARE=2 REDUCTION RATIO=10 Specifications: N M	# of Testa 2 2 60:1 Aanufactured per Ch Asts customer spec	Test n Min Valu 57.8 67 arter Steol Qualit (fications with ar	y applicable Chart	# 2072932 xx Value 4 DECARB (Im 9/12/12 or Steel exce	aptions f	58. 1 67		TENSILE RA LAB 4	LAB = 0358-04 = 0359-04

Figure C-18. 1¹/₄-in. (32-mm) Splice Bolts, Test No. GAA-1

NUCOR

NUCOR CORPORATION NUCOR STEEL SOUTH CAROLINA

Sold To: BIRMINGHAM FASTENER & SUPPLY PO BOX 10323 BIRMINGHAM, AL 35202-0323 (205) 595-3511 Fax: (205) 591-0244

Mill Certification 3/11/2016

DARLINGT Fax: (843)

BIRMINGHAM FASTENER & SUPPLY 931 AVE W PO BOX 10323 BIRMINGHAM, AL 35202-0000 (205) 595-3511 Fax: (205) 591-0244 Ship To:

Customer P.O.	M7812	Sales Order	238747.1
Product Group	Merchant Bar Quality	Part Number	30000562480DES0
Grade	ASTM A307-55, F1554-07a gr 55, S1. AASHTO M314 GR 55, S1	Lot #	DL1510704804
Size	9/16" (.5625) Round	Heat #	DL15107048
Product	9/16" (.5625) Round 40' A307-55	B.L. Number	C1-666488
Description	A307-55	Load Number	C1-366222
Customer Spec		Customer Part #	

Roll Date: 1/28/2016 Melt Date: 12/5/2015 Qty Shipped LBS: 17,494 Qty Shipped Pcs: 517

Melt Date: 12/5/2015

C	Mn	V	Si	S	P	Cu	Cr	Ni	Mo	Cb	CE1554
0.22%	0.82%	0.0410%	0.27%	0.010%	0.007%	0.20%	0.10%	0.06%	0.015%	0.001%	0.37%

Roll Date: 1/28/2016

Reduction of Area: 50.43%	Reduction of Area #2: 53.52%	
Yield 2: 66,000psi	Tensile 2: 88,000psi	Elongation 21% in 8"(% in 203.3mm)
Yield 1: 67,000psi	Tensile 1: 87,000psi	Elongation: 21% in 8"(% in 203.3mm)

Specification Comments:

DING OR WELD REPAIR WAS NOT PERFORMED ON THIS MATERIAL TED AND MANUFACTURED IN THE USA CURY, RADIUM, OR ALPHA SOURCE MATERIALS IN ANY FORM HAVE NOT BEEN USED IN THE PRODUCTION OF THIS

	for H Rem	
	James H. Blew	
IBMG-10 January 1, 2012	Division Metallurgist	Page 1 of 2

Figure C-19. 10-in. (254-mm) Hex Bolts, Test No. GAA-1

		me: 330-438 IC ENGINEERED	(KODUCIU		July 9, 2008 PAG	E 1
		190				
95M 118 747 - 01		PT AC SC RI	RCHASE ORDER DATI COUNT NUMBER : REDULE : VISION :	5:	4/14/2008 5550-3007- 4116-85 1	01
i Pag		1997 - 19	111 12			
ETY PRODUCTS INC 887 4TH FLOOR		C/	O BCS METALS PRE 0 STERLING AVE	þ		
			We have			
1 ····						
IES FOR INFO ONLY E IAM X COIL MM DIAM X COIL	XTRA TESTIN	NG			EST REPORTS	OF
P	\$	SI SI C	cu i ai	NI	CR	
0.007	0.002	0.1.0	0.03	0.04	0.0	06
SN 0.001	0,037	0.001	0.0040			
DARD FORMAT	- FINISHED	SIZE RESULTS -				
PSI	8 8					
422000	72.4 4	9.0				
ADTING		17 a.				
. ANG		DTES	72 d.			
, AND ASTM BLOSS, D PRODUCTS HEREBY C CE WITH THE METHODS	LEL10184, 1 ERTIFY THAT PRESCRIBED	SEL10188. THE MATERIAL D IN THE GOVERN	LISTED HEREIN HAS	BEEN I	NSPECTED AN ASED UPON T	
TS SHALL NOT BE REP	RODUCED EXC	EPT IN FULL.				
EN PERFORMED USING	THE CURRENT	REVISION OF 1	HE TESTING SPECIA	ICATION	S.	
		TEMENTS OR ENT	RIES ON THIS DOCI	MENT MA	Y BE PUNISH	ŒD
, FICTITIOUS OR FRA FED STATUES TITLE 1	8 CHAPTER 4	7	a fa a la carda da c			
, FICTITIOUS OR FRA PED STATUES TITLE 1 OT EXPOSED TO MERCU OR WHILE IN OUR POS	8 CHAPTER 4 RY OR ANY M	7. (1997)	T IS LIQUID AT AN	BIENT T	emperature	
FED STATUES TITLE 1 OT EXPOSED TO MERCU OR WHILE IN OUR POS	8 CHAPTER 4 RY OR ANY M SESSION.	17. IETAL ALLOY THA	T IS LIQUID AT AN	BIENT T	emperature	
FED STATUES TITLE 1 OT EXPOSED TO MERCU	8 CHAPTER 4 RY OR ANY M SESSION. ON THIS MAT	17. TETAL ALLOY THA VERIAL:	T IS LIQUID AT A	BIENT T	emperature	
PED STATUES TITLE 1 OT EXPOSED TO MERCU OR WHILE IN OUR POS PAIR WAS PERFORMED	8 CHAPTER 4 RY OR ANY M SESSION. ON THIS MAT	17. IETAL ALLOY THA	T IS LIQUID AT AN	BIENT T	emperature	
	118 119 129 129 129 129 129 129 129	118 119 129 129 129 129 129 129 129	11B AC 147 - 01 SG 153 ST 154 ST 155 ST 156 ST 157 ST 158 ST 159 ST 150 ST 155 ST 156 O.007 157 S 158 ST 159 ST 150 O.007 151 LADLE CHEMISTRY \$ 152 ST 153 O.001 151 ST 152 ST 153 O.001 152 ST 152 ST 152 ST 152 ST 152 ST 152 ST <td>HIB ACCOUNT NUMMER: MAT = 01 SCREDULE: HE4 REVISION: USTRIES INC TRINITY INDUSTRIES ETY PRODUCTS INC C/O BCS METALS PRED B87 4TH FLOOR 5800 STERLING AVE 75355-8887 MATERIAL DESCRIPTION OULS CARBON AISI-1015 AR AL KILLED FINE GRAIN COLD WORKING ON IES FOR INPO ONLY EXTRA TESTING IAM X COLL P S P S 0.007 0.002 0.001 0.037 0.001 0.037 0.001 0.037 SEMI - FINISHED RESULTS INTES INTES INTES ONOTES CONFORMAT LE YIELD(0.24) NOTES CONFORMS TO APPLICABLE SPECS: ASTM EA15, LEL10129, LEL10130, ASTM EL0/ASTM A370 HBW AS-RLD/CD HEM MOTES NOTES CONFORMS TO APPLICABLE SPECS: ASTM EA15, LEL10129, LEL10130, , AND ASTM EL065, LEL10184, LEL10186. D PRODUCTS HEREBY CERTIFY TMAT THE MATERIAL LISTED HEREIN HAA CS WITH THE METHODS PRESCRIBED IN THE GOVERNING SPECIFICAT</td> <td>HIB ACCOUNT NUMMER: 447 - 01 SCREDULS: H84 REVISION: USTRIES INC THINITY INDUSTRIES INC ETY PRODUCTS INC C/O SCS METALS PREP B87 4TH FLOOR Salo STERLING AVE TS355-B887 MATERIAL DESCRIPTION MATERIAL DESCRIPTION </td> <td>HIB ACCOUNT NUMMER: 5550-3007- SCREDULE: 4116-85 H4 REVISION: 1 H53 REVISION: 1 H54 REVISION: 1 H55 REVISION: 1 H55 REVISION: 1 H55 REVISION: 1 H55 REVISION: 1 H56 REVISION: 1 H57 RETY PRODUCTS INC C/O BCS METALS PREP H57 HATERIAL DESCRIPTION </td>	HIB ACCOUNT NUMMER: MAT = 01 SCREDULE: HE4 REVISION: USTRIES INC TRINITY INDUSTRIES ETY PRODUCTS INC C/O BCS METALS PRED B87 4TH FLOOR 5800 STERLING AVE 75355-8887 MATERIAL DESCRIPTION OULS CARBON AISI-1015 AR AL KILLED FINE GRAIN COLD WORKING ON IES FOR INPO ONLY EXTRA TESTING IAM X COLL P S P S 0.007 0.002 0.001 0.037 0.001 0.037 0.001 0.037 SEMI - FINISHED RESULTS INTES INTES INTES ONOTES CONFORMAT LE YIELD(0.24) NOTES CONFORMS TO APPLICABLE SPECS: ASTM EA15, LEL10129, LEL10130, ASTM EL0/ASTM A370 HBW AS-RLD/CD HEM MOTES NOTES CONFORMS TO APPLICABLE SPECS: ASTM EA15, LEL10129, LEL10130, , AND ASTM EL065, LEL10184, LEL10186. D PRODUCTS HEREBY CERTIFY TMAT THE MATERIAL LISTED HEREIN HAA CS WITH THE METHODS PRESCRIBED IN THE GOVERNING SPECIFICAT	HIB ACCOUNT NUMMER: 447 - 01 SCREDULS: H84 REVISION: USTRIES INC THINITY INDUSTRIES INC ETY PRODUCTS INC C/O SCS METALS PREP B87 4TH FLOOR Salo STERLING AVE TS355-B887 MATERIAL DESCRIPTION MATERIAL DESCRIPTION	HIB ACCOUNT NUMMER: 5550-3007- SCREDULE: 4116-85 H4 REVISION: 1 H53 REVISION: 1 H54 REVISION: 1 H55 REVISION: 1 H55 REVISION: 1 H55 REVISION: 1 H55 REVISION: 1 H56 REVISION: 1 H57 RETY PRODUCTS INC C/O BCS METALS PREP H57 HATERIAL DESCRIPTION

Figure C-20. 1¹/₂-in. (38-mm) Splice Bolts, Test No. GAA-1

	Nel	ubli	18 PH	07 EAST 28					0H 440
CERTIFICATE	OF TESTS	n an Earth Anna an An	REPUBI	LIC ENGINEERI	ED PRODI	JCTS		September P	- 12, 2008 AGE 1
OF 2		1							
PURCHASE ORD									
PART NUMBER:						E ORDER DA		5550-300	07-01
ORDER NUMBER :	: 1379747 - 01	1			SCHEDUL			7327-85	
	7367052				REVISIO			1	
==== CHARGE	ADDRESS ====	earestere:	129022651	***********************	22042245	≤≃ ShiP it) ==24=325	CHCAGANKS:	
TRINIT	Y INDUSTRIES	INC				INDUSTRIE			
	Y SAGETY PRO					METALS PR			
	X 568887 4TH , TX 75356-81					ERLING AVE EIGHTS, OF			
	, IN 15550 01	There are an	and the				The second second	1.1	
						网络拉拉拉		8. au	
		a fail she w	A PART	AL DESCRIPTIO	1	x为何代的		\$3N	
		REON AISI-101	S AK AL	KILLED FINE G	RATN COL	DWORKING	OUALTYRY	FST REPOI	RTS OF
		INFO ONLY EX				1965年1月		2	
SIZE: RDS .6	390 DIAM X C	OIL	331				A BAR AND		
RDS 16		X COIL	LADLR	CHEMICTOV \$		$= \frac{\pi}{j \langle 0, i \rangle} \sum_{i=1}^{n-1} \frac{1}{i} \sum_{i=1}^{n-1} \frac{1}{i}$			
C	Niet	P 0.008 SN 0.001	S.	SI SI	A. 1	CU	NI		CR.
0.15	0.49	0.008	0.002	0,06	1.	0.03	NI 0.02		0.05
V	MO	SN	AL	CB -	A *	N			
0.002	0.01	0.001	0.029	0.001	-i	0.0050	a com		
TENSILE TEST	STANDARD FOR		ill in a	P (A)					
			RA .	B					
۹.	PSI	PSI	1 S	8 8		同語論語的	推阅第三	34	
3.	PSI 60850	PSI 45000	€ 64.4	¥ 44.0					
¥.,	PSI 60850	PSI 45000	# 10 10 10 1 H	44.0					
PCE 14133 HARDNESS TEST	PSI 60850 P ASTM MID-RADIUS	PSI 45000	# 10 10 10 1 H	44.0					
PCE 14133 HARDNESS TEST PCE 14134	PSI 60850 P ASTM MID-RADIUS 116	PSI 45000 E10/ASTM A370	HBW	44.0 AS-RLD/CD HB					
PCE 14133 HARDNESS TEST PCE 14134 CHEMICAL ANAL	PSI 60850 MID-RADIUS 116 .YSIS CONFORM	PSI 45000 El0/ASTM A370 S TO APPLICAB	HBW	44.0 AS-RLD/CD HB NOTES ASTM E415,	1 LBI.10129		, ASTM I	31019,	
PCE 14133 HARDNESS TEST PCE 14134 CHEMICAL ANAL	PSI 60850 MID-RADIUS 116 .YSIS CONFORM	PSI 45000 E10/ASTM A370 IS TO APPLICAB ASTM E1085. L	HBW LE SPECS BL10184.	44.0 AS-RLD/CD HB NOTES ASTM E415,	1 LBI.10129	, LBL10130	法国际的公司行	21019,	
PCE 14133 HARDNESS TEST PCE 14134 CHEMICAL ANAL LBL10158, LBL	PSI 60850 MID-RADIUS 116 .YSIS CONFORM LI0114, AND	PSI 45000 E10/ASTM A370 S TO APPLICAB ASTM E1085, L	HBW LE SPECS BL10184,	44.0 AS-RLD/CD HBS NOTES : ASTM E415, LBL10188.	LBL 1 0129	, L91.10130			
PCE 14133 HARDNESS TEST PCE 14134 CHEMICAL ANAL LBL10158, LBL REPUBLIC ENGI	PSI 60850 MID-RADIUS 116 YSIS CONFORM JOIL4, AND KNEERED PRODU	PSI 45000 E10/ASTM A370 S TO APPLICAB ASTM E1085, L CTS HEREBY CE	HBW LE SPECS BL10184, RTIFY THJ	44.0 AS-RLD/CD HBI NOTES ASTM E415, LBL10188 AT THE MATERI	LBL10129 AL LISTE	, LBL10130 D HEREIN I	LAS BEEN J	INSPECTED	
PCE 14133 HARDNESS TEST PCE 14134 CHEMICAL ANAL LBL10158, LBL	PSI 60850 MID-RADIUS 116 VSIS CONFORM JOI14, AND (NEERED PRODU CORDANCE WITH	PSI 45000 E10/ASTM A370 STO APPLICAB ASTM E1085, L CTS HEREBY CE THE METHODS N AND, TESTING	HBW LE SPECS BL10184, RTIFY THJ PRESCRIBI HAS BEEN	44.0 AS-RLD/CD HBM NOTES ASTM E415, LBL10188. AT THE MATERI ED IN THE GOV	LBL10129 AL LISTE ERNING S	D HEREIN F	LAS BEEN J	INSPECTED	N THE
PCE 14133 HARDNESS TEST PCE 14134 CHEMICAL ANAL LBL10158, LBL REPUBLIC ENGI TESTED IN ACC RESULTS OF SU	PSI 60850 MID-RADIUS 116 .VSIS CONFORM 10114, AND CNEERED PRODU CORDANCE WITH JCH INSPECTIO	PSI 45000 E10/ASTM A370 STO APPLICAB ASTM E1085, L CTS HEREBY CF THE METHODS N AND TESTING L NOT BE REPR	HBW LE SPECS BL10184, RTIFY THJ PRESCRIBI HAS BEEP	44.0 AS-RLD/CD HB AS-RLD/CD HB ASTM E415 LBL10188 AT THE MATERI ED IN THE GOV A APPROVED PO KCEPT IN FULL	LBL10129 AL LISTE ERNING S R CONFOR	D HEREIN F	LAS BEEN J	INSPECTED	N THE
PCE 14133 HARDNESS TEST PCE 14134 CHEMICAL ANAL LBL10158, LBL REPUBLIC ENGI TESTED IN ACC RESULTS OF SU	PSI 60850 P ASTM MID-RADIUS 116 .VSIS CONFORM .JOI14, AND .NEERED PRODU CORDANCE WITH JCH INSPECTIO DF TESTS SHAL	PSI 45000 E10/ASTM A370 S TO APPLICAB ASTM E1085, L CTS HEREBY CE THE METHODS N AND TESTING N AND TESTING L NOT BE REPR	HBW LE SPECS BL10184, RTIFY THJ PRESCRIBI HAS BEEN ODUCED EJ	44.0 AS-RLD/CD HBM AS-RLD/CD HBM ASTM E415, LBL10188. AT THE MATERI ED IN THE GOV N APPROVED FO KCEPT IN FULL	LBLI0129 AL LISTE ERNING S R CONFOR	, LBL10130 D HSREIN H PECIFICATI MANCE TO 1	LAS BEEN 1 ONS AND T HE SPECIE	INSPECTED BASED UPOD TICATIONS	N THE
PCE 14133 HARDNESS TEST PCE 14134 CHEMICAL ANAL LBLI0158, LBL REPUBLIC ENGI TESTED IN ACC RESULTS OF SU CERTIFICATE C ALL TESTING H	PSI 60850 P ASTM MID-RADIUS 116 VSIS CONFORM LOI14, AND LOI14, AND LOI14, AND CHEED PRODU CORDANCE WITH ICH INSPECTIO IF TESTS SHAL LAS BEEN PERF	PSI 45000 E10/ASTH A370 S TO APPLICAB ASTM E1085, L CTS HEREBY CE THE METHODS N AND, TESTING N AND, TESTING N AND, TESTING N AND, TESTING ORMED USING T	HBW LE SPECS BL10184, RTIFY THJ PRESCRIBI HAS BEEP ODUCED EJ HE CURREP	44.0 AS-RLD/CD HAN AS-RLD/CD HAN AST HAN E415, LBL10188. AT THE MATERI ED IN THE MATERI ED IN THE MATERI ED IN THE MATERI VI REVISION O	AL LISTE EXAMPLE THE THE TE	, LBLIDIGG D HEREIN F PECIFICATI MANCE TO T STING SPEC	LAS BEEN J ONS AND T HE SPECIA SIFICATION	INSPECTED BASED UPOD TICATIONS	N THE
PCE 14133 HARDNESS TEST PCE 14134 CHEMICAL ANAL LBLI0158, LBL REPUBLIC ENGI TESTED IN ACC RESULTS OF SU CERTIFICATE C ALL TESTING H RECORDING OF	PSI 60850 P ASTM MID-RADIUS 116 .VSIS CONFORM .01014, AND .00RDANCE WITH JCH INSPECTIO .0F TESTS SHAL IAS BZEN PERF FALSE, FICTI	PSI 45000 E10/ASTM A370 S TO APPLICAB ASTM E1085, L CTS HEREBY CE THE METHODS N AND TESTING L NOT BE REPR ORMED USING T TIOUS OR FRAU	HBW LE SPECS BL10184, RTIFY THJ PRESCRIBI HAS BEEN ODUCED EJ HE CURREN DULENT ST	44.0 AS-RLD/CD HEN ASTM E415, LBL10188. AT THE MATERI ED IN THE GOV N APPROVED FO N APPROVED FO N APPROVED FO NT REVISION O FATEMENTS OR	AL LISTE EXAMPLE THE THE TE	, LBLIDIGG D HEREIN F PECIFICATI MANCE TO T STING SPEC	LAS BEEN J ONS AND T HE SPECIA SIFICATION	INSPECTED BASED UPOD TICATIONS	N THE
PCE 14133 HARDNESS TEST PCE 14134 CHEMICAL ANAL BELOISA, LBL REPUBLIC ENGI TESTED IN ACC RESULTS OF SU CERTIFICATE C ALL TESTING H RECORDING OF AS A FELONY U THE MATERIAL	PSI 60850 P ASTM MID-RADIUS 116 USES CONFORM USES CONFORM	PSI 45000 E10/ASTM A370 S TO APPLICAB ASTM E1085, L CTS HEREBY CE THE METHODS, N AND TESTING L NOT BE REPR ORMED USING T TIOUS OR PRAU TUES TITLE 18 SED TO MERCUR	HBW LE SPECS BLJ0184, RTIFY THJ PRESCRIBI UNAS BEEN ODUCED EN HE CURREN DULENT ST CHAPTER Y OR ANY	44.0 AS-RLD/CD HBH AS-RLD/CD HBH ASTM E415, LBL10188. AT THE MATERI 2D IN THE GOVE IN THE GOVE N APPROVED FO KCEPT IN FULL VT REVISION O TATEMENTS OR 47.	AL LISTE ERNING S R CONFOR F THE TE ENTRIES	, LBLIDISC D HEREIN : PECIFICATI MANCE TO I STING SPEC ON THIS DO	IAS BEEN I ONS AND T YE SPECI SIFICATION DOLMENT M	INSPECTED DASED UPOD TICATIONS 75. AY BE PUN	N THE
PCE 14133 HARDNESS TEST PCE 14134 CHEMICAL ANAL LBLI0158, LBL REPUBLIC ENGI TESTED IN ACC RESULTS OF SU CERTIFICATE C ALL TESTING H	PSI 60850 r ASTM MID-RADIUS 116 .XSIS CONFORM .NOINA, AND .NOINA, AND .NOINA, AND .NOERED PRODU .ORDANCE WITH JCH INSPECTIO DF TESTS SHAL IAS BEEN PERF FALSE, FICTI NNDER FED STA WAS NOT EXPO SSING OR WHIL	PSI 45000 E10/ASTM A370 S TO APPLICAB ASTM E1085, L CTS HEREBY CE THE METHODS N AND TESTING N AND TESTING L NOT BE REPR ORMED USING T TIOUS OR PRAU TUES TITLE 18 SED TO MERCUR E IN OUR POSS	HBW LE SPECS BLIJO184, RTIFY THJ PRESCRIBIN HAS BEEN ODUCED EX HE CURREN DULENT S CHAFTER Y OR ANY ESSION.	44.0 AS-RLD/CD HBH AS-RLD/CD HBH ASTM E415, LBL10188. AT THE MATERI 2D IN THE GOV N APPROVED FO NAPPROVED FO NT REVISION O UATEMENTS OR 47. METAL ALLOY	AL LISTE ERNING S R CONFOR F THE TE ENTRIES	, LBLIDISC D HEREIN : PECIFICATI MANCE TO I STING SPEC ON THIS DO	IAS BEEN I ONS AND T YE SPECI SIFICATION DOLMENT M	INSPECTED DASED UPOD TICATIONS 75. AY BE PUN	N THE
PCE 14133 HARDNESS TEST PCE 14134 CHEMICAL ANAL LBL1015A, LBL REPUBLIC ENGI TESTED IN ACC RESULTS OF SU CERTIFICATE C ALL TESTING H RECORDING OF AS A FELONY U THE MATERIAL DURING PROCES	PSI 60850 P ASTM MID-RADIUS 116 UNCERED PRODU CORDANCE WITH ICH INSPECTIO OF TESTS SHAL IAS BZEN PERF PALSE, FICTI INDER FED STA WAS NOT EXPO SSING OR WHILL ELD REPAIR WA	PSI 45000 E10/ASTM A370 S TO APPLICAB ASTM E1085, L CTS HEREBY CE THE METHODS N AND TESTING N AND TESTING L NOT BE REPR ORMED USING T TIOUS OR PRAU TUES TITLE 18 SED TO MERCUR E IN OUR POSS	HBW LE SPECS ELIGIBA. RTIFY THU PRESCRIBI MAS BEEN ODUCED EJ HE CURREN DULENT ST CHAPTER Y OR ANY ESSION. N THIS MJ	44.0 AS-RLD/CD HBH AS-RLD/CD HBH ASTM E415, LBL10188. AT THE MATERI 2D IN THE GOV N APPROVED FO NAPPROVED FO NT REVISION O UATEMENTS OR 47. METAL ALLOY	I LBLIOI29 AL LISTE ERNING S R CONFOR F THE TE ENTRIES THAT IS	, LBLIDISC D HEREIN : PECIFICATI MANCE TO I STING SPEC ON THIS DO	IAS BEEN I ONS AND T YE SPECI SIFICATION DOLMENT M	INSPECTED DASED UPOD TICATIONS 75. AY BE PUN	N THE

Figure C-21. 1¹/₂-in. (38-mm) Splice Bolts, Test No. GAA-1

١.

		Rep	ublic		BO7 EAS KONE:	т 28тн 330-430-	ST. -5694	*		N, OH 44055 330-438-5695
	CERTIFICATE O		1916 F #1 11 0 S # 1810				RODUCTS		Octobe	31, 2008 PAGE 1
•.	OF 2 PURCHASE ORD: PART NUMBER: ORDER NUMBER: HEAT: ===== CHARGE 7	129120M 100941B 1396203 - 01 7368369				PUT ACC SCH REN	RCHASE ORDEN COUNT NUMBEN REDULE: VISION:	R DATE: R:	8/27/2 5550-3 9510-8 1	008 007-01 5
;	HIGHWAY P O BOX	INDUSTRIES SAGETY PROD 568387 4TH TX 75356-88	UCTS INC FLOOR			C/0 580	INITY INDUS D BCS METALS D STERLING PLE HEIGHTS	S PREP AVE		
	c	EEL COILS CAR DERTIES FOR 90 DIAM X CO 2306MM DIAM	INFO ONLY EXT IL X COIL	AK AL RA TEST - LADLE S	KILLED E TING CHEMIST	TINE GRAIN	COLD WORK	ING QUALITY	TEST RE	
	0.002 REDUCTION RATI AUSTENITIC GRA ASTM A29	0.02 0 112.3 TO 1 AIN SIZE 5 OR	FINER BASED	OT A NO	TAL ALUN	IINIM CON	CENT EQUAL	TO OR GREAT	er than	
	TENSILE TEST	STANDARD FORM TENSILE PSI 58600		RA	ED SIZE F	LESULTS	N No			
	HARDNESS TEST PCE 15911 CHEMICAL ANALY	ASTM E MID-RADIUS L11			NOTES -	CD HBW			51019	
Survey -	REPUBLIC ENGIN TESTED IN ACCC RESULTS OF SUC	0114, AND A ZEERED PRODUC DRDANCE WITH	STM E1085, LB TS HEREBY CER THE METHODS P	L10184, TIFY TH RESCRIE	LBL1018 LAT THE M DED IN TH	ATERIAL INE GOVERNI	ISTED HERE:	IN HAS BEEN CATIONS AND	INSPECTI BASED UI	PON THE
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			- 13. 1	1 1 1			
	CERTIFICATE OF	TESTS SHALL		DUCED E	XCEPT IN	FULL.	·		31	
	CERTIFICATE OF	.F	NOT BE REPRO				E TESTING S	SPECIFICATIO	DNS.	
		S BEEN PERFO	NOT BE REPRO RMED USING TH IOUS OR FRAUD	e curre Ulent s	TATEMENT	ION OF TH	1.1.2			NISHED
	ALL TESTING HAR	S BEEN PERFO VALSE, FICTIT DER FED STAT VAS NOT EXPOS	NOT BE REPRO RMED USING TH IOUS OR FRAUD UES TITLE 18 ED TO MERCURY	E CURRE ULENT S CHAPTER OR ANY	NT REVIS	SION OF TH	RIES ON THIS	DOCUMENT)	nay be pr	
	ALL TESTING HA RECORDING OF F AS A FELONY UN THE MATERIAL W	S BEEN PERFO PALSE, FICTIT DER FED STAT NAS NOT EXPOS ING OR WHILE	NOT BE REPRO RMED USING TH IOUS OR FRAUD UES TITLE 18 ED TO MERCURY IN OUR POSSE	E CURRE ULENT S CHAPTER OR ANY SSION.	NT REVIS TATEMENT 47. METAL A	SION OF TH S OR ENTR ALLOY THAT	RIES ON THIS	DOCUMENT)	nay be pr	

Figure C-22. 1¹/₂-in. (38-mm) Splice Bolts, Test No. GAA-1

R#16-0217

BCT Hex Nuts December 2015 SMT

22979 Stelfast Parkway Faste

Fastenal part#36713

Strongsville, Ohio 44149 Control# 210101523

CERTIFICATE OF CONFORMANCE

DESCRIPTION OF MATERIAL AND SPECIFICATIONS

•	Sales Order #:	129980
•	Part No:	AFH2G0625C
·	Cust Part No:	36713
•	Quantity (PCS):	1200
•	Description:	5/8-11 Fin Hx Nut Gr2 HDG/TOS 0.020
•	Specification:	SAE J995(99) - GRADE 2 / ANSI B18.2.2
•	Stelfast I.D. NO:	595689-0201087
•	Customer PO:	210101523
•	Warehouse:	DAL

The data in this report is a true representation of the information provided by the material supplier certifying that the product meets the mechanical and material requirements of the listed specification. This certificate applies to the product shown on this document, as supplied by STELFAST INC. Alterations to the product by our customer or a third party shall render this certificate void.

This document may only be reproduced unaltered and only for certifying the same or lesser quantity of the product specified herein. Reproduction or alteration of this document for any other purpose is prohibited.

Stelfast certifies parts to the above description. The customer part number is only for reference purposes.

David Biss

Quality Manager

December 07, 2015

Page 1 of 1

Figure C-23. ⁵/₈-in. (16-mm) Dia. Hex Nut, Test No. GAA-1

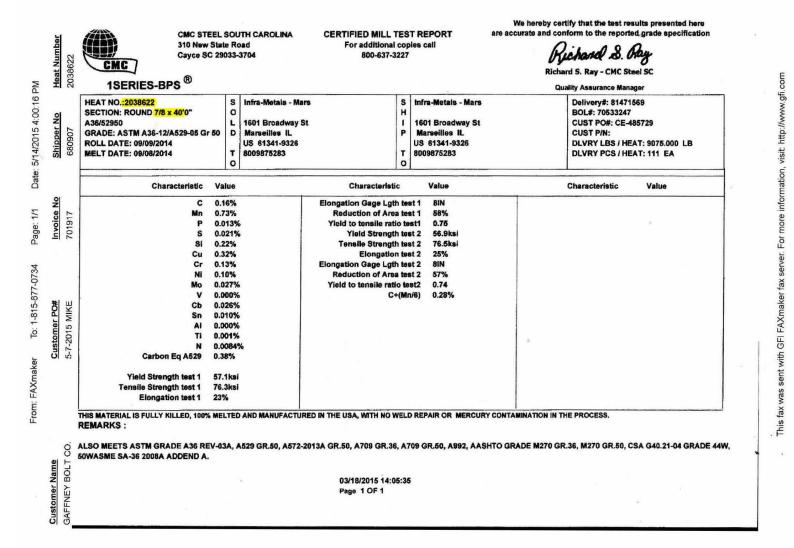


Figure C-24. 7/8-in. (22-mm) Dia., 8-in. (203-mm) Long Hex Bolt, Test No. GAA-1

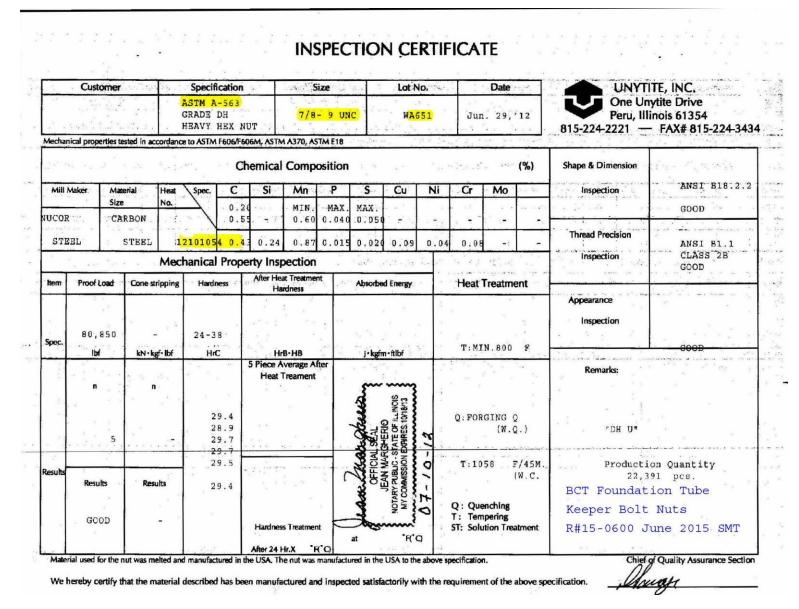


Figure C-25. ⁷/₈-in. (22-mm) Dia. Hex Nut, Test No. GAA-1

Appendix D. Vehicle Center of Gravity Determination

Year:	2011	_ Test Name: _ Make:	GAA-1 Kia	VIN: Model:		Rio	6915197
Vehicle CG	Determi	nation					
					Weight		
VE	EHICLE	Equipment			(lb.)		
+		Unbalasted Ca	ar (Curb)		2326		
+	-07//07//07//07//0	Hub			19		
+		Brake activation	on cylinder 8	frame	7		
+		Pneumatic tan			22		
+		Strobe/Brake	Battery		5		
+		Brake Recieve	er/Wires		5		
+		CG Plate inclu	ding DAS		13		
		Battery			-31		
		Oil	an an the City of States of the		-5		
1. 		Interior		source experience experience	-65		
		Fuel			-13		
		Coolant			-8		
-		Washer fluid			-8		
+		Water Ballast	(In Fuel Tan	k)	112		
+		Onboard Batte	ery		14		
		DTS Rack			17		
		Estin	nated Total V		ent from vehicle		
Vehicle Dimer		Estin r C.G. Calculat	nated Total V ions	Veight (lb.)	2410		_
Vehicle Dimer	57 3/4	<u>r C.G. Calculat</u> _in.	nated Total V i ons Front Tr	Veight (lb.) ack Width:	2410 57 3/4	in.	_
Vehicle Dimer		r C.G. Calculat	nated Total V i ons Front Tr	Veight (lb.)	2410 57 3/4		-
Vehicle Dimer	57 3/4	<u>r C.G. Calculat</u> _in.	nated Total V i ons Front Tr	Veight (lb.) ack Width:	2410 57 3/4	in.	-
Vehicle Dimer Roof Height: Wheel Base:	57 3/4 98 3/8	<u>r C.G. Calculat</u> in. in.	nated Total V i ons Front Tr Rear Tr	Veight (lb.) ack Width: ack Width:	2410 57 3/4 58	in. in.	– Difference
Vehicle Dimer Roof Height: Wheel Base:	57 3/4 98 3/8 vity	r C.G. Calculat _ in. _ in. _ 1100C MAS	nated Total V ions Front Tr Rear Tr H Targets	Veight (lb.) ack Width: ack Width:	2410 57 3/4 58	in. in.	– Differenc
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W	57 3/4 98 3/8 vity /eight (lb.)	<u>r C.G. Calculat</u> _ in. _ in. _ 1100C MASI _ 2420 ±	nated Total V ions Front Tr Rear Tr H Targets : 55	Veight (lb.) ack Width: ack Width:	2410 57 3/4 58	in. in.	-2
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W Longitudinal C	57 3/4 98 3/8 vity /eight (lb.) G (in.)	r C.G. Calculat _ in. _ in. _ 1100C MAS	nated Total V ions Front Tr Rear Tr H Targets : 55	Veight (lb.) ack Width: ack Width:	2410 57 3/4 58 Test Inertial 2392	in. in.	
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W	57 3/4 98 3/8 vity /eight (Ib.) G (in.))	<u>r C.G. Calculat</u> _ in. _ in. _ 1100C MASI _ 2420 ± 	nated Total V ions Front Tr Rear Tr H Targets : 55	Veight (lb.) ack Width: ack Width:	2410 57 3/4 58 Test Inertial 2392 39.48161	in. in.	-2 0.481605
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir	57 3/4 98 3/8 vity /eight (Ib.) G (in.) .) n.)	<u>r C.G. Calculat</u> in. in. in. 	nated Total V ions Front Tr Rear Tr H Targets : 55 : 4	Veight (lb.) ack Width: ack Width:	2410 57 3/4 58 Test Inertial 2392 39.48161 -0.33873	in. in.	-2 0.481605 N
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir Note: Long. CG is	57 3/4 98 3/8 vity /eight (lb.) G (in.) .) n.) s measured	<u>r C.G. Calculat</u> in. in. 1100C MAS 2420 ± 39 ± NA NA	nated Total V ions Front Tr Rear Tr H Targets : 55 : 4 st vehicle	Veight (lb.) ack Width: ack Width:	2410 57 3/4 58 Test Inertial 2392 39.48161 -0.33873 22.40248	in. in.	-2 0.481605 N
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir Note: Long. CG is Note: Lateral CG	57 3/4 98 3/8 vity /eight (lb.) G (in.) .) n.) s measured fi measured fi	r C.G. Calculat in. in. 1100C MAS 2420 ± 39 ± NA NA NA	nated Total V ions Front Tr Rear Tr H Targets : 55 : 4 st vehicle	Veight (Ib.) ack Width: ack Width:] ight (passeng	2410 57 3/4 58 Test Inertial 2392 39.48161 -0.33873 22.40248 er) side	in. in.	-2 0.481605 N N
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir Note: Long. CG is	57 3/4 98 3/8 vity /eight (lb.) G (in.) .) n.) s measured fi measured fi	r C.G. Calculat in. in. 1100C MAS 2420 ± 39 ± NA NA NA	nated Total V ions Front Tr Rear Tr H Targets : 55 : 4 st vehicle	Veight (Ib.) ack Width: ack Width:] ight (passeng	2410 57 3/4 58 Test Inertial 2392 39.48161 -0.33873 22.40248	in. in.	-2 0.481605 N N
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir Note: Long. CG is Note: Lateral CG	57 3/4 98 3/8 vity /eight (lb.) G (in.) .) n.) s measured measured fi T (lb.)	r C.G. Calculat in. in. 1100C MAS 2420 ± 39 ± NA NA from front axle of ter rom centerline - posi	nated Total V ions Front Tr Rear Tr H Targets : 55 : 4 st vehicle	Veight (Ib.) ack Width: ack Width:] ight (passeng	2410 57 3/4 58 Test Inertial 2392 39.48161 -0.33873 22.40248 er) side	in. in.	-2 0.481605 N N GHT (Ib.)
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (is Note: Long. CG is Note: Lateral CG	57 3/4 98 3/8 vity (eight (lb.) G (in.) .) n.) s measured measured fi IT (lb.) Left	r C.G. Calculat in. in. 1100C MAS 2420 ± 39 ± NA NA from front axle of ter rom centerline - posi	nated Total V ions Front Tr Rear Tr H Targets : 55 : 4 st vehicle	Veight (lb.) ack Width: ack Width:	2410 57 3/4 58 Test Inertial 2392 39.48161 -0.33873 22.40248 er) side TEST INER	in. in. TIAL WEI Left	-2 0.481605 N N GHT (Ib.) Right
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG CURB WEIGH	57 3/4 98 3/8 vity /eight (Ib.) G (in.) .) n.) s measured fi measured fi IT (Ib.) Left 745	r C.G. Calculat in. in. 1100C MAS 2420 ± 39 ± NA NA from front axle of tes rom centerline - posi	nated Total V ions Front Tr Rear Tr H Targets : 55 : 4 st vehicle	Veight (lb.) ack Width: ack Width:	2410 57 3/4 58 Test Inertial 2392 39.48161 -0.33873 22.40248 er) side TEST INER	n. n. TIAL WEI Left 729	-2 0.481605 N M GHT (Ib.) Right J 703
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (is Note: Long. CG is Note: Lateral CG	57 3/4 98 3/8 vity (eight (lb.) G (in.) .) n.) s measured measured fi IT (lb.) Left	r C.G. Calculat in. in. 1100C MAS 2420 ± 39 ± NA NA from front axle of ter rom centerline - posi	nated Total V ions Front Tr Rear Tr H Targets : 55 : 4 st vehicle	Veight (lb.) ack Width: ack Width:	2410 57 3/4 58 Test Inertial 2392 39.48161 -0.33873 22.40248 er) side TEST INER	in. in. TIAL WEI Left	-2 0.481605 N N GHT (Ib.) Right
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG CURB WEIGH	57 3/4 98 3/8 vity /eight (Ib.) G (in.) .) n.) s measured fi measured fi IT (Ib.) Left 745	r C.G. Calculat in. in. 1100C MAS 2420 ± 39 ± NA NA from front axle of tes rom centerline - posi	nated Total V ions Front Tr Rear Tr H Targets : 55 : 4 st vehicle	Veight (lb.) ack Width: ack Width:	2410 57 3/4 58 Test Inertial 2392 39.48161 -0.33873 22.40248 er) side TEST INER	n. n. TIAL WEI Left 729	-2 0.481605 N M GHT (Ib.) Right 703
Vehicle Dimer Roof Height: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (ir Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear	57 3/4 98 3/8 vity /eight (Ib.) G (in.) .) n.) s measured fi measured fi IT (Ib.) Left 745 432	r C.G. Calculat in. in. 1100C MASI 2420 ± 39 ± NA NA from front axle of ter rom centerline - posi	nated Total V ions Front Tr Rear Tr H Targets : 55 : 4 st vehicle	Veight (lb.) ack Width: ack Width:	2410 57 3/4 58 Test Inertial 2392 39.48161 -0.33873 22.40248 er) side TEST INER Front Rear	n. in. TIAL WEI Left 729 481	-2 0.481605 N N GHT (Ib.) Right 703 479

Figure D-1. Vehicle Mass Distribution, Test No. GAA-1

Appendix E. Static Soil Tests



Figure E-1. Soil Strength, Initial Calibration Tests, Test No. GAA-1

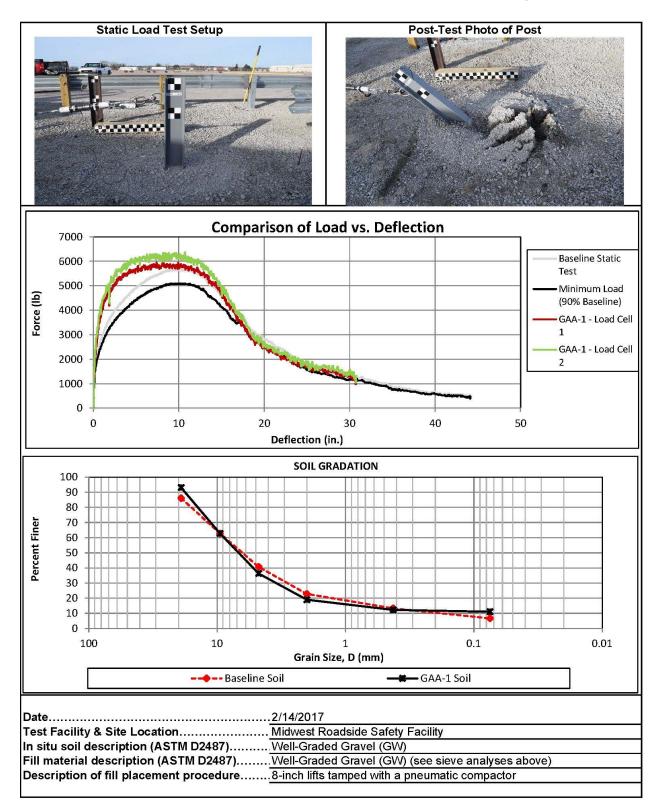


Figure E-2. Static Soil Test, Test No. GAA-1

Appendix F. Vehicle Deformation Records

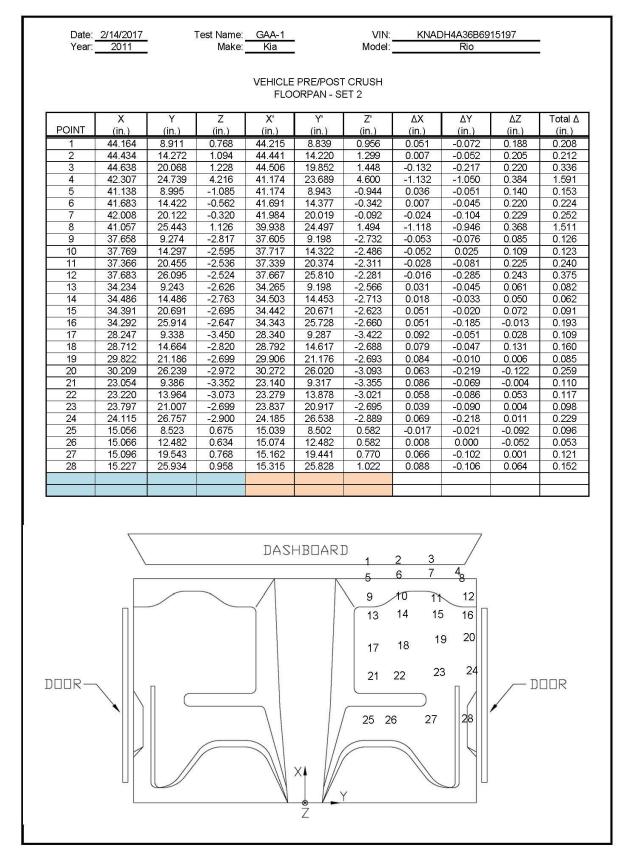


Figure F-1. Floor Pan Deformation Data - Set 2, Test No. GAA-1

						POST CRU RUSH - SET					
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	۲' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔZ (in.)	Total / (in.)
DASH		28.401	3.445	25.359	28.320	3.350	25.394	-0.081	-0.094	0.035	0.129
	1 2	30.058	16.464	25.339	29.984	16.235	25.263	-0.074	-0.094	0.035	0.129
	3	29.636	25.895	24.810	29.579	25.893	24.989	-0.057	-0.002	0.179	0.207
	4	24.144	2.402	16.249	24.071	2.315	16.307	-0.073	-0.087	0.058	0.128
	5	27.751	17.271	18.932	27.720	17.092	19.024	-0.031	-0.179	0.091	0.203
	6	27.221	26.670	17.885	27.194	26.528	18.113	-0.027	-0.142	0.228	0.270
SIDE	7	39.121	29.131	3.386	39.111	28.357	3.783	-0.011	-0.774	0.397	0.870
	8	38.085	28.955	8.553	37.978	28.200	8.809	-0.108	-0.755	0.256	0.804
	9	33.769	29.184	4.342	34.131	28.670	4.926	0.362	-0.514	0.584	0.858
IMPACT SIDE DOOR	10	28.872	29.857	23.544	28.836	29.743	23.622	-0.036	-0.115	0.078	0.143
	11	15.833	29.944	24.380	15.770	29.989	24.504	-0.063	0.044	0.124	0.146
	12	2.584	30.084	25.262	2.533	30.253	25.156	-0.051	0.169	-0.105	0.206
Q Q	13	28.118	30.677	10.817	28.094	30.528	10.987	-0.024	-0.149	0.171	0.228
IP/	14	15.835	30.698	13.746	15.754	30.829	13.879	-0.081	0.131	0.133	0.204
≤	15	5.118	30.707	13.142	5.052	30.796	13.141	-0.066	0.089	-0.001	0.111
	16	16.788	2.020	40.717	15.290	2.215	37.236	-1.498	0.194	-3.480	3.794
	17	16.566	7.129	40.854	14.959	7.235	36.540	-1.607	0.106	-4.314	4.605
	18	16.461	11.908	40.791	14.888	11.864	35.958	-1.573	-0.044	-4.833	5.083
	19	16.047	16.617	40.665	14.730	16.388	36.822	-1.317	-0.229	-3.843	4.069
	20	15.422	21.376	40.450	14.915	20.844	38.694	-0.506	-0.532	-1.756	1.904
	21	10.021	1.766	43.399	8.659	1.918	40.155	-1.361	0.152	-3.244	3.522
Ч	22	9.266	7.205	43.578	7.702	7.104	39.709	-1.564	-0.101	-3.870	4.175
ROOF	23	8.862	11.193	43.567	7.357	10.989	39.313	-1.505	-0.204	-4.254	4.517
£	24	8.246	15.789	43.455	7.317	15.356	40.426	-0.928	-0.434	-3.029	3.198
	25	8.239	19.965	43.135	7.554	19.281	41.314	-0.685	-0.684	-1.821	2.063
	26	4.597	1.401	44.268	3.960	1.592	42.712	-0.638	0.191	-1.555	1.692
	27	4.354	6.615	44.331	3.173	6.565	41.422	-1.181	-0.050	-2.909	3.140
	28	4.158	10.751	44.276	2.954	10.585	40.745	-1.204	-0.165	-3.532	3.735
	29 30	3.971	15.299	44.091	2.976	15.131	41.093	-0.996	-0.168	-2.998	3.163
		3.735	18.755	43.886	3.171	18.228	42.349	-0.564	-0.526	-1.537 -0.334	1.719
A PILLAR	31	16.390	23.742 24.929	38.588	16.256	23.051 24.196	38.254 35.355	-0.134	-0.691 -0.733	-0.334	0.779
	32 33	21.814 27.130	26.098	35.762 32.739	21.826 27.200	25.606	32.405	0.012 0.070	-0.733	-0.407	0.839
	34	34.208	27.609	27.906	34.263	27.235	27.964	0.070	-0.492	0.057	0.382
	35	0.443	29.372	13.602	0.504	29.263	13.582	0.061	-0.109	-0.020	0.302
PILLAR	35	-4.298	29.372	12.791	-4.228	29.263	13.562	0.061	-0.109	0.020	0.120
	37	-4.298	29.329	20.365	-4.220	29.230	20.430	-0.010	-0.080	0.065	0.170
	38	-5.036	29.317	20.000	-5.037	29.187	20.400	0.000	-0.130	-0.066	0.145
	39	-2.474	27.891	30.624	-2.552	27.606	30.551	-0.078	-0.286	-0.073	0.305
	40							-0.040			0.254
		-2.474 -6.392	27.891	30.624 30.355	-2.552 -6.432	27.645	30.551 30.390		-0.286 -0.248	0.073	

Figure F-2. Occupant Compartment Deformation Data – Set 2, Test No. GAA-1

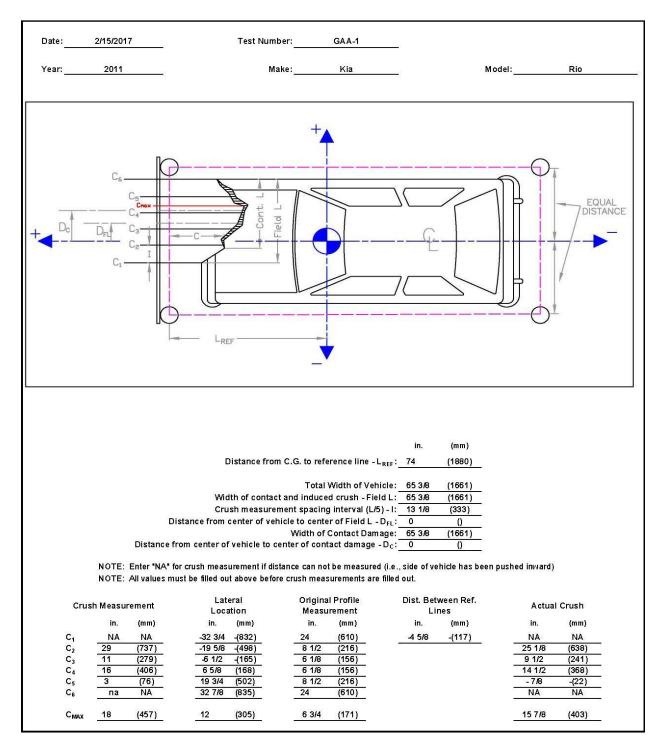


Figure F-3. Exterior Vehicle Crush (NASS) - Front, Test No. GAA-1

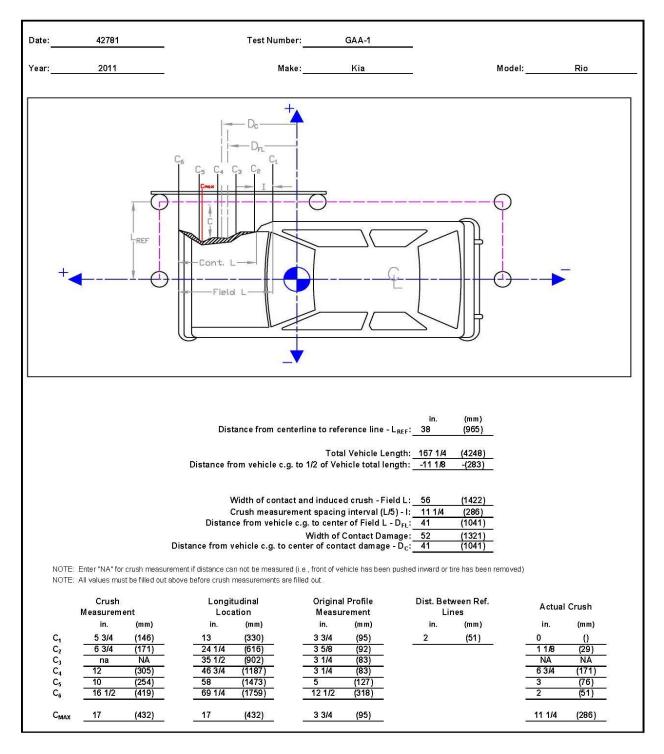


Figure F-4. Exterior Vehicle Crush (NASS) - Side, Test No. GAA-1

Point	Vertical on Left Side A-pillar	Lateral from Left Side A-pillar	Reference Vehicle	Test No. GAA-1	Crush
	(from top corner) (in.)	(from top corner) (in.)	(in)	(in.)	(in.)
1	6	8	5.375	10	4 5/8
2	6	12.5	5	12	7
3	6	19	4.875	12	7 1/8
4	15	7	5 1/4	8.25	3
5	15	12	5	8 1/2	3 1/2
6	15	18.5	4 3/4	10 3/4	6

GAA-1 test vehicle

Undamaged Reference Vehicle

Figure F-5. Windshield Crush, Test No. GAA-1

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. GAA-1

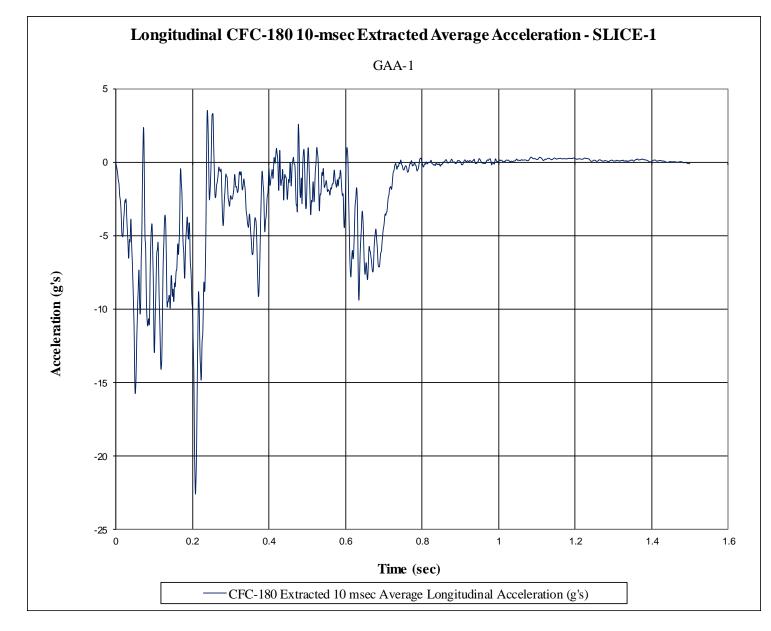


Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. GAA-1

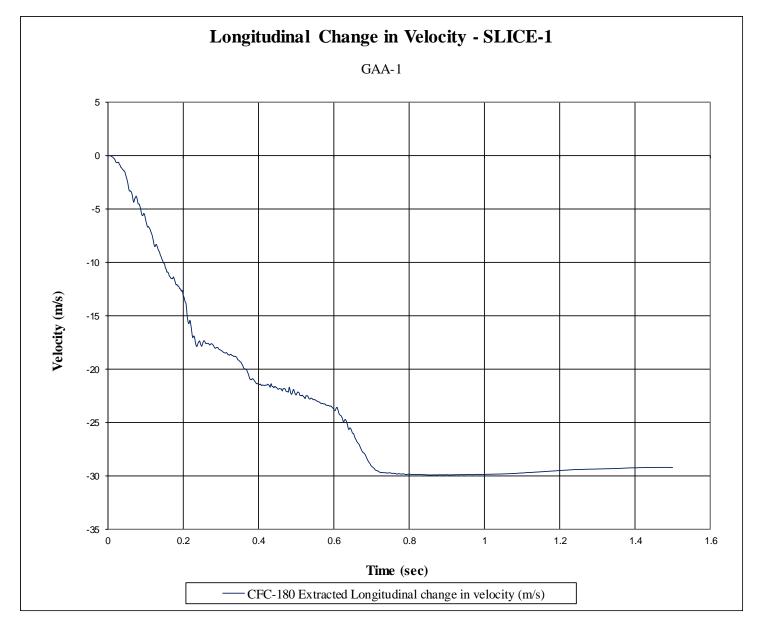


Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. GAA-1

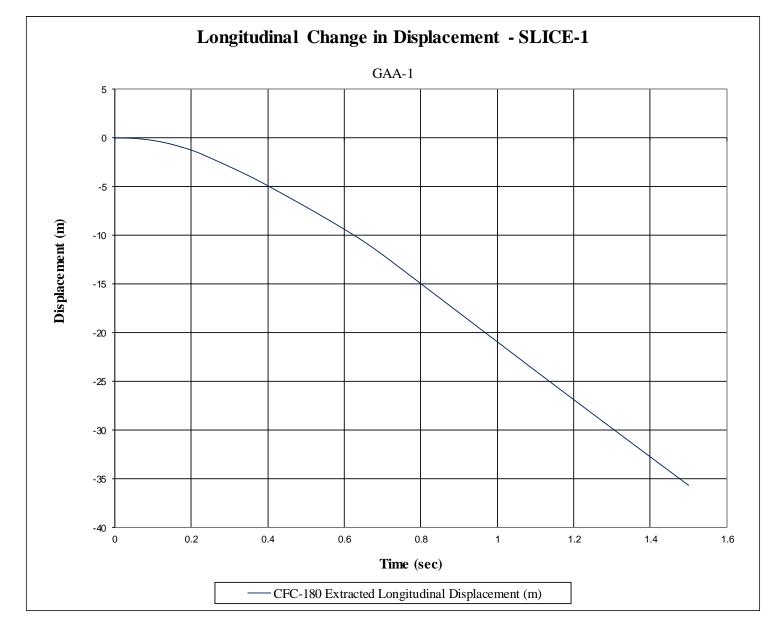


Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. GAA-1

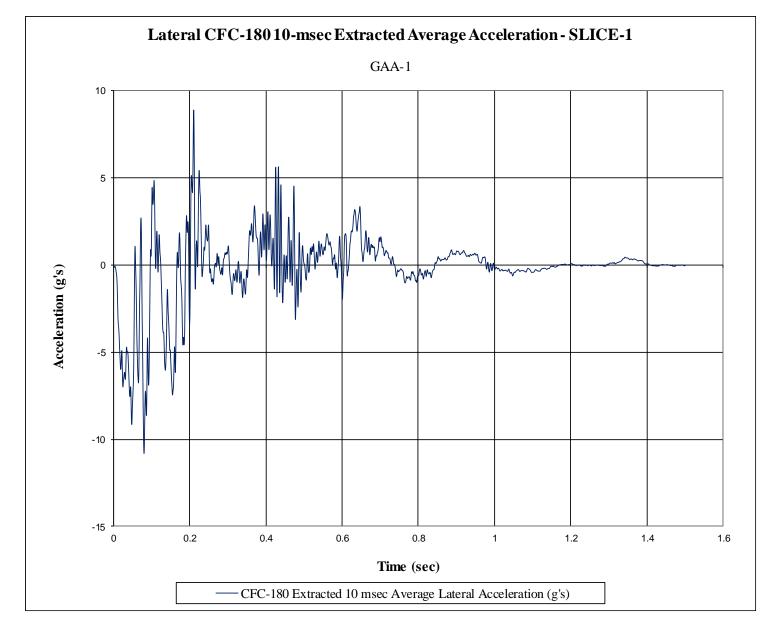


Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. GAA-1

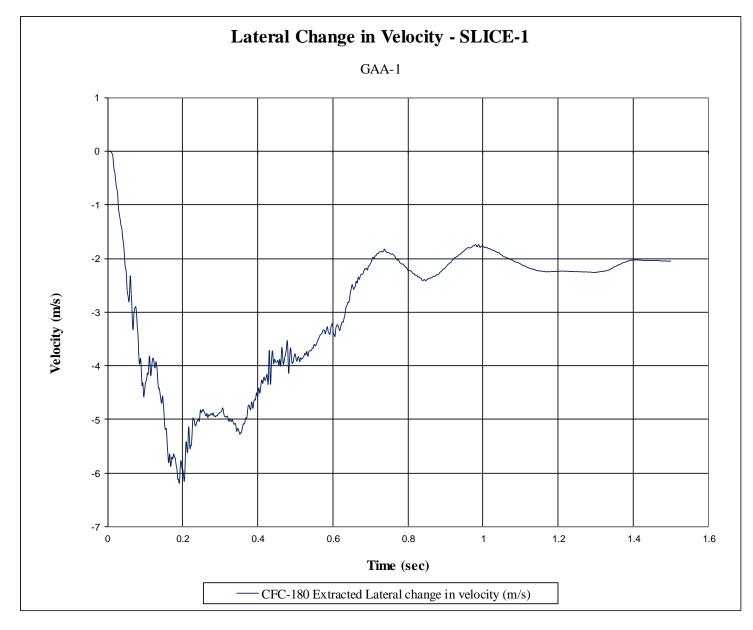


Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. GAA-1

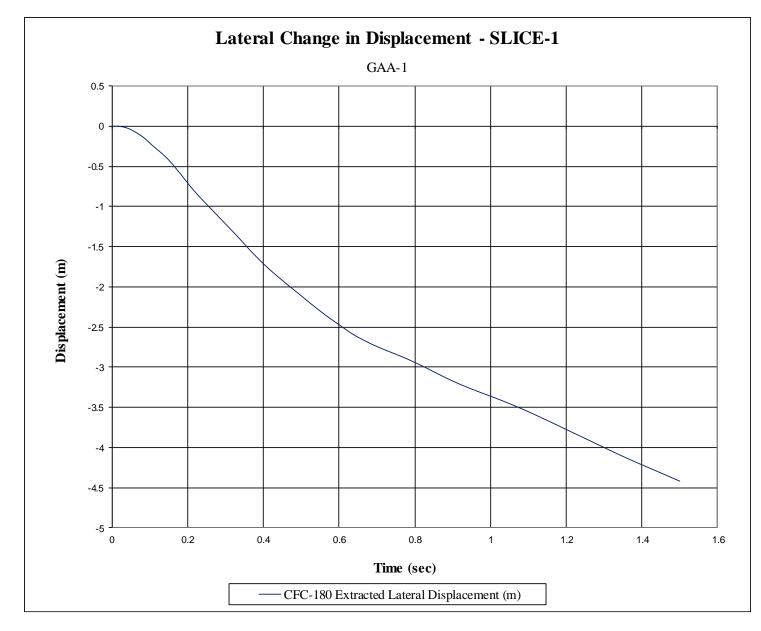


Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. GAA-1

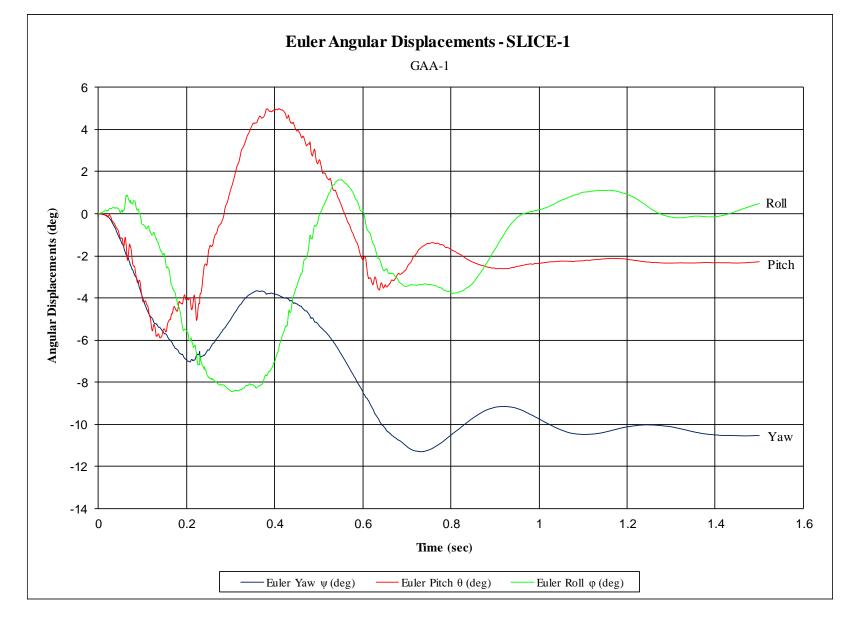


Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. GAA-1

122

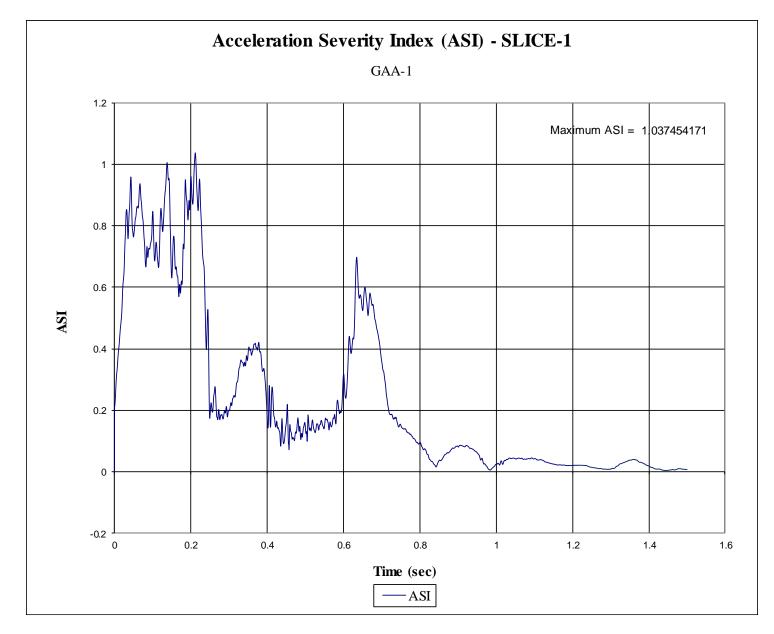


Figure G-8. Acceleration Severity Index (SLICE-1), Test No. GAA-1

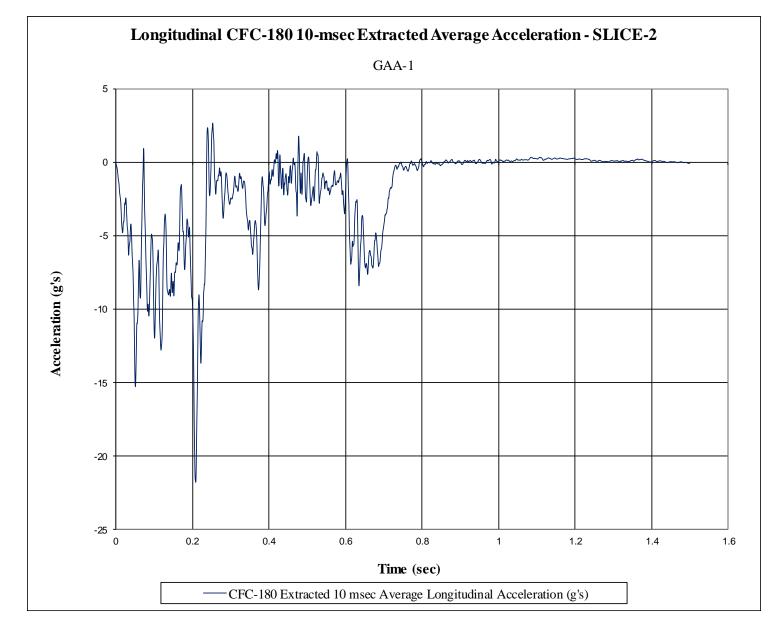


Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. GAA-1

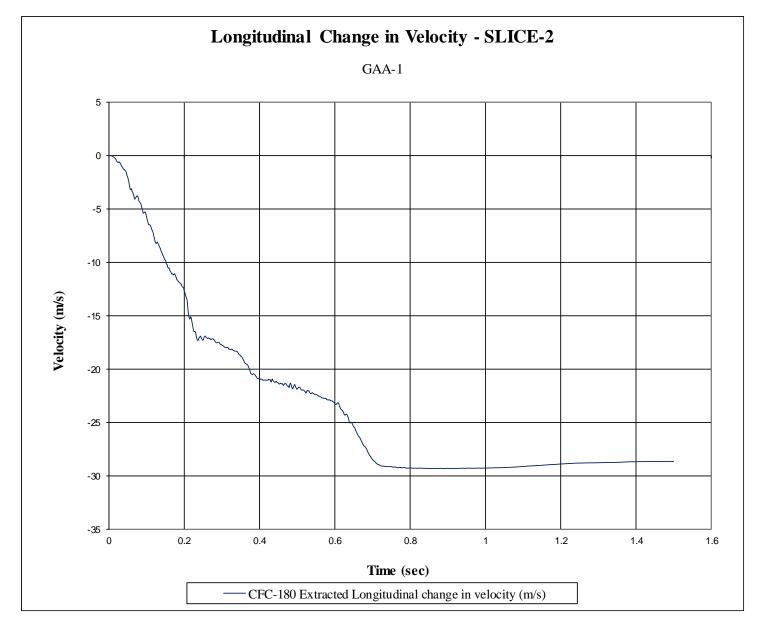


Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. GAA-1

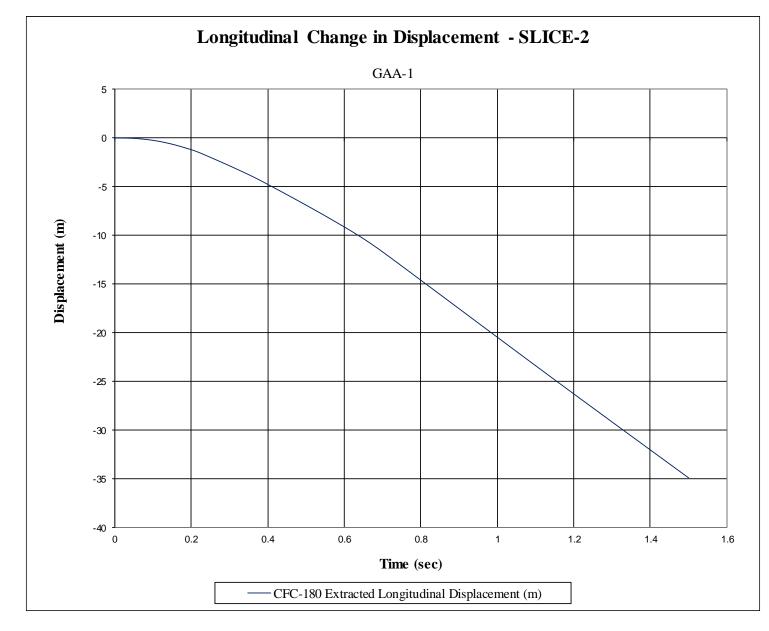


Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. GAA-1

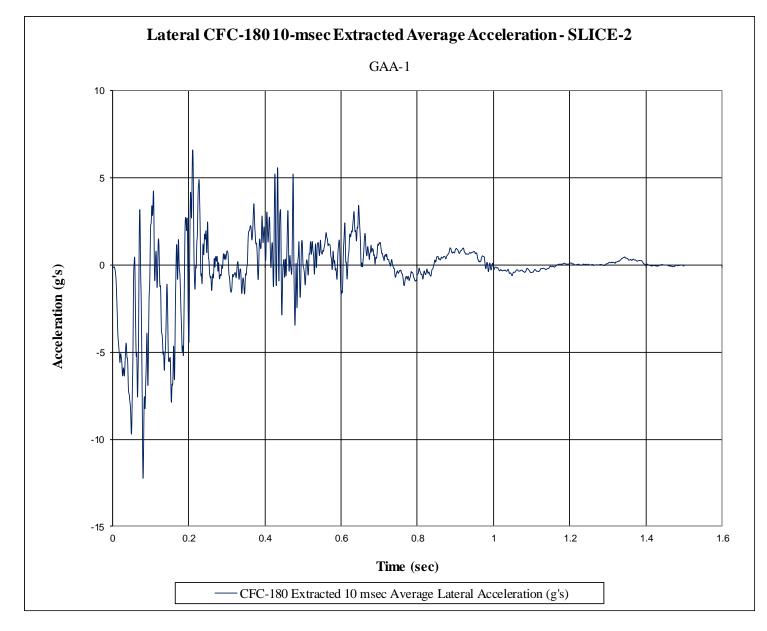


Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. GAA-1

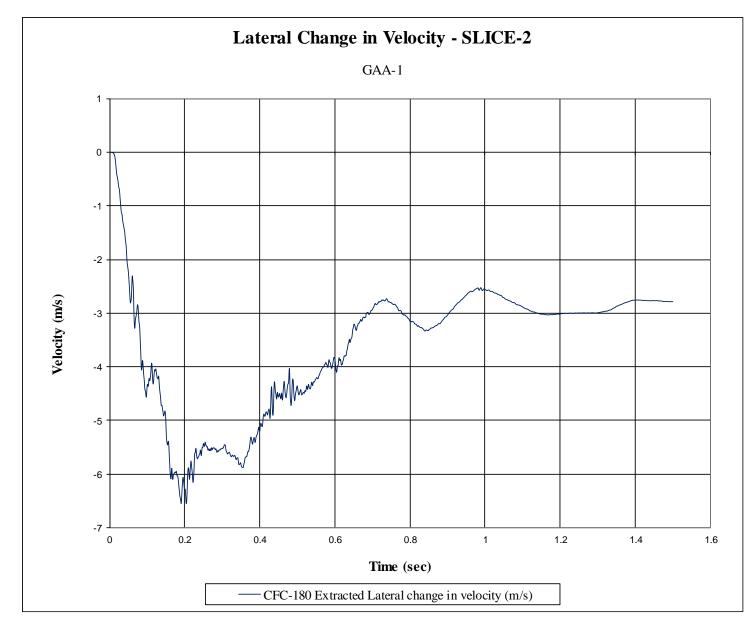


Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. GAA-1

128

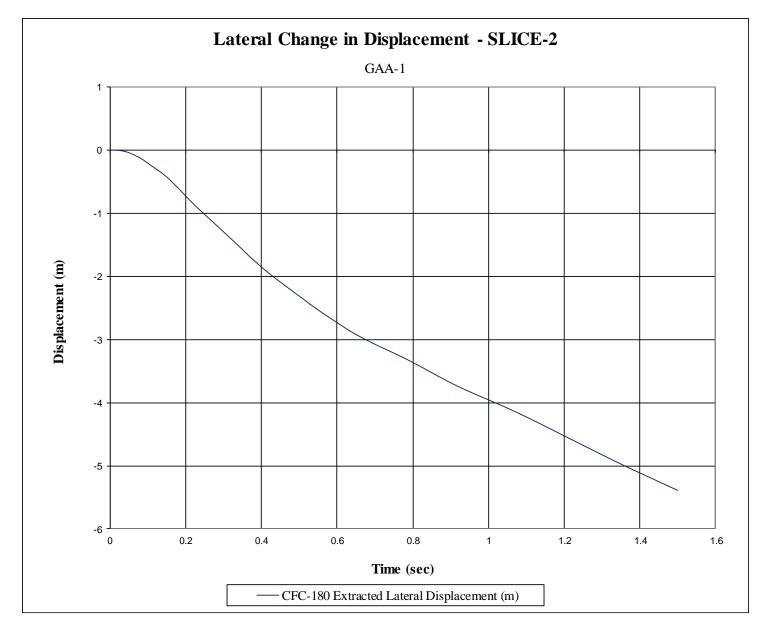


Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. GAA-1

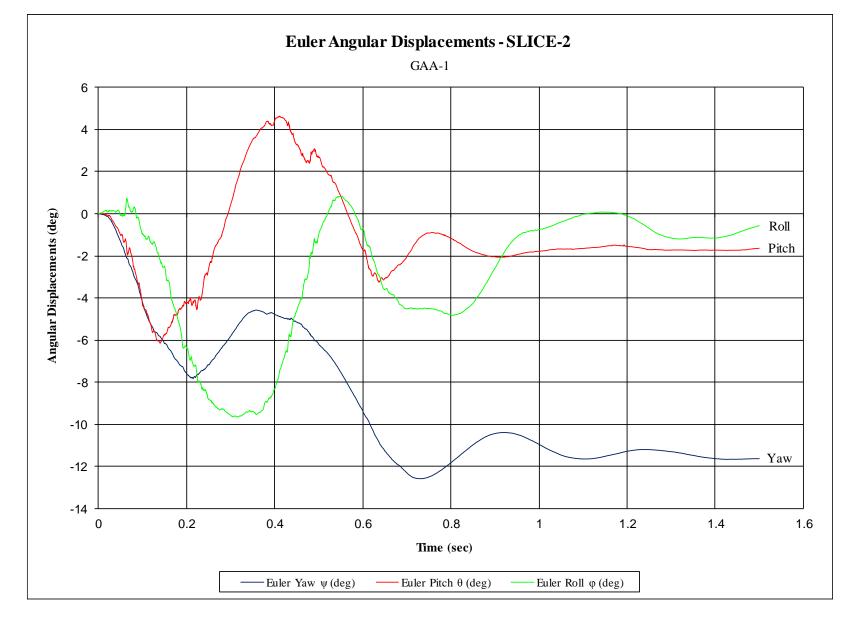


Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. GAA-1

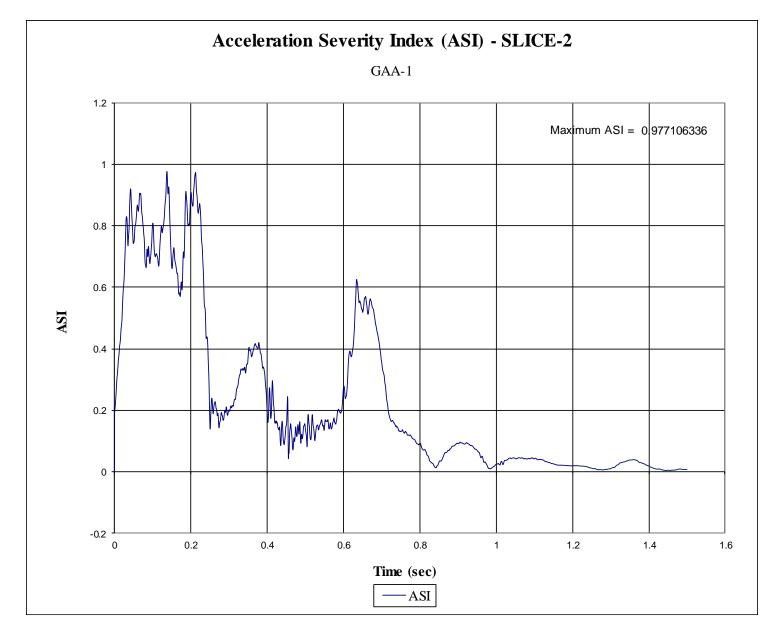


Figure G-16. Acceleration Severity Index (SLICE-2), Test No. GAA-1

END OF DOCUMENT